A086253 Decimal expansion of Feller's alpha coin-tossing constant.
1, 0, 8, 7, 3, 7, 8, 0, 2, 5, 3, 8, 4, 1, 5, 2, 7, 2, 3, 1, 4, 1, 7, 1, 1, 9, 4, 3, 6, 0, 3, 4, 9, 5, 9, 7, 3, 0, 5, 0, 4, 0, 6, 5, 9, 5, 3, 0, 1, 9, 6, 7, 8, 7, 0, 4, 8, 1, 6, 0, 8, 0, 7, 5, 6, 6, 2, 3, 3, 7, 3, 4, 7, 8, 5, 5, 9, 4, 7, 7, 3, 2, 9, 7, 0, 3, 1, 5, 8, 2, 9, 1, 5, 2, 1, 1, 8, 2, 5, 0, 9, 2
Offset: 1
Examples
1.0873780253841527231417119436....
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.11 Feller's coin tossing constants, p. 339.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Run
- Wikipedia, Feller's coin-tossing constants
Programs
-
Maple
evalf[120](solve(x^3+2*x^2+4*x-8=0,x)[1]); # Muniru A Asiru, Nov 25 2018
-
Mathematica
alpha = Root[1-x+(x/2)^4, x, 1]; RealDigits[alpha, 10, 102] // First (* Jean-François Alcover, Jun 03 2014 *)
-
PARI
solve(x=1, 3/2, 1-x+(x/2)^4) \\ Michel Marcus, Oct 14 2018
Formula
Equals -2/3 - 4/(3*(17 + 3*sqrt(33))^(1/3)) + 2*(17 + 3*sqrt(33))^(1/3)/3. - Vaclav Kotesovec, Oct 14 2018
Positive real root of x^3 + 2*x^2 + 4*x - 8. - Peter Luschny, Oct 14 2018