A086331 Expansion of e.g.f. exp(x)/(1 + LambertW(-x)).
1, 2, 7, 43, 393, 4721, 69853, 1225757, 24866481, 572410513, 14738647221, 419682895325, 13094075689225, 444198818128313, 16278315877572141, 640854237634448101, 26973655480577228769, 1208724395795734172705, 57453178877303382607717, 2887169565412587866031533
Offset: 0
Keywords
Examples
a(2) = 7 because {}->{}, 1->1, 2->2, and the four functions from {1,2} into {1,2}. Note A000169(2) = 9 because it counts these 7 and 1->2, 2->1.
Links
- Winston de Greef, Table of n, a(n) for n = 0..385 (first 201 terms from Vincenzo Librandi)
- V. Kotesovec, Interesting asymptotic formulas for binomial sums, Jun 09 2013
Programs
-
Maple
a:= n-> add(binomial(n,k)*k^k, k=0..n): seq(a(n), n=0..25); # Alois P. Heinz, Dec 30 2021
-
Mathematica
nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[x]/(1-t),{x,0,nn}],x] (* Geoffrey Critzer, Dec 19 2011 *)
-
PARI
a(n) = sum(k=0,n, binomial(n, k)*k^k ); \\ Joerg Arndt, May 10 2013
-
PARI
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k*x)^k/k!))) \\ Seiichi Manyama, Jul 04 2022
Formula
a(n) = Sum_{k=0..n} binomial(n,k)*k^k.
a(n) ~ e^(1/e)*n^n * (1 + 1/(2*e*n)) ~ 1.444667861... * n^n. - Vaclav Kotesovec, Nov 27 2012
G.f.: Sum_{k>=0} (k * x)^k/(1 - x)^(k+1). - Seiichi Manyama, Jul 04 2022
Comments