cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086347 On a 3 X 3 board, number of n-move routes of chess king ending in a given side square.

Original entry on oeis.org

1, 5, 24, 116, 560, 2704, 13056, 63040, 304384, 1469696, 7096320, 34264064, 165441536, 798822400, 3857055744, 18623512576, 89922273280, 434183143424, 2096421666816, 10122419240960, 48875363631104, 235991131488256, 1139465980477440, 5501828447862784
Offset: 0

Views

Author

Zak Seidov, Jul 17 2003

Keywords

Comments

Number of aa-avoiding words of length n on alphabet {a,b,c,d,e}. - Tanya Khovanova, Jan 11 2007
Binomial transform of A164589 and second binomial transform of A096886. [Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009]
From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in a given side square m (m = 2, 4, 6, 8).
Inverse binomial transform of A001109 (without the leading 0).
(End)
Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the path graph P_n (see A235116). Example: a(1)=5; indeed, P_1 is the one-vertex graph and after attaching two pendant vertices we obtain the path graph ABC; the independent vertex subsets are: empty, {A}, {B}, {C}, and {A,C}.
Number of simple paths from corner to diagonally opposite corner on a 2 X n grid with king moves allowed. - Andrew Howroyd, Nov 06 2019
Number of 4-compositions of n+1 restricted to parts 1 and 2 (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020

Examples

			a(3) = 116 = 5^3 - 9 (aaa, aab, aac, aad, aae, baa, caa, daa, eaa). [Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009]
		

Crossrefs

Row 2 of A329118.
Row sums of A235113.
Cf. A028859.
Cf. A126473. - Johannes W. Meijer, Aug 01 2010

Programs

  • Maple
    with(LinearAlgebra): nmax:=19; m:=2; A[5]:= [1,1,1,1,0,1,1,1,1]: A:=Matrix([[0,1,0,1,1,0,0,0,0],[1,0,1,1,1,1,0,0,0],[0,1,0,0,1,1,0,0,0],[1,1,0,0,1,0,1,1,0],A[5],[0,1,1,0,1,0,0,1,1],[0,0,0,1,1,0,0,1,0],[0,0,0,1,1,1,1,0,1],[0,0,0,0,1,1,0,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
    # second Maple program:
    a:= n-> (<<0|1>, <4|4>>^n. <<1, 5>>)[1,1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 12 2022
  • Mathematica
    Table[(Sqrt[2]/32)((2+Sqrt[8])^(n+2)-(2-Sqrt[8])^(n+2)), {n, 0, 19}]

Formula

a(n) = (sqrt(2)/32)*((2+sqrt(8))^(n+2)-(2-sqrt(8))^(n+2)).
From Ralf Stephan, Feb 01 2004: (Start)
G.f.: (1+x)/(1-4*x-4*x^2).
a(n) = A057087(n) + A057087(n-1). (End)
a(n) = 4*a(n-1) + 4*a(n-2). - Tanya Khovanova, Jan 11 2007
Limit_{k->oo} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). - Johannes W. Meijer, Aug 01 2010
E.g.f.: exp(2*x)*(4*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x))/4. - Stefano Spezia, Mar 17 2025

Extensions

Offset changed and edited by Johannes W. Meijer, Jul 15 2010