cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086377 a(1)=1; a(n)=a(n-1)+2 if n is in the sequence; a(n)=a(n-1)+2 if n and (n-1) are not in the sequence; a(n)=a(n-1)+3 if n is not in the sequence but (n-1) is in the sequence.

Original entry on oeis.org

1, 4, 6, 8, 11, 13, 16, 18, 21, 23, 25, 28, 30, 33, 35, 37, 40, 42, 45, 47, 49, 52, 54, 57, 59, 62, 64, 66, 69, 71, 74, 76, 78, 81, 83, 86, 88, 91, 93, 95, 98, 100, 103, 105, 107, 110, 112, 115, 117, 120, 122, 124, 127, 129, 132, 134, 136, 139, 141, 144, 146, 148, 151
Offset: 1

Views

Author

Benoit Cloitre, Sep 13 2003

Keywords

Comments

From Joseph Biberstine (jrbibers(AT)indiana.edu), May 02 2006: (Start)
The continued fraction 4/Pi = 1 + 1/(3 + 4/(5 + 9/(7 + 16/(9 + 25/(11 + ...))))) (see A079037) suggests the recurrence b(n) = 2*n - 1 + n^2/b(n+1) with b(1) = 4/Pi. Solving the above recurrence in the other direction we would have b(n) = (n-1)^2/b(n-1 - 2*n + 3) with b(1) = 4/Pi.
Now consider this last defined sequence {b(n)}. It appears to grow linearly. (1) Does it? (2) What is the limit of b(n)/n as n->oo? (3) How does the limit depend on the initial term b(1)? (End)
From the recurrence relation, it follows that the limit L = lim_{b->oo} b(n)/n satisfies the following quadratic equation: L^2 - 2*L - 1 = 0 implying that L = 1+sqrt(2) or 1-sqrt(2). - Max Alekseyev, May 02 2006
Note that b(n)/n decreases, while b(n)/(n+1) increases. I speculate that 4/Pi is the only b(1) value such that b(n)/n converges to 1+sqrt(2) instead of 1-sqrt(2). - Don Reble, May 02 2006
It appears that round( b(n) ) = floor((1+sqrt(2))*n - 1/sqrt(2)) = A086377(n) = a(n). This is certainly true for the first 190 terms. Is there a formal proof? - Paul D. Hanna, May 02 2006
Is A086377 the sequence of positions of 0 in A189687? - Clark Kimberling, Apr 25 2011
The three conjectures by respectively Biberstein, Hanna, and Kimberling have all been proved, see the paper by Bosma et al. in the Links. - Michel Dekking, Oct 05 2017
In the Fokkink-Joshi paper, this sequence is the Cloitre (1,1,3,2)-hiccup sequence, - Michael De Vlieger, Jul 29 2025

Crossrefs

Programs

Formula

a(n) = floor((1+sqrt(2))*n - 1/sqrt(2)).
n is in the sequence if A004641(n)=1 or A001030(n)=2. a(n) = A080652(n) - 1 = A064437(n+1) - 2 = A081841(n+2) - 3. - Ralf Stephan, Feb 23 2004