cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086383 Prime terms in the sequence of Pell numbers, A000129.

Original entry on oeis.org

2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449, 4760981394323203445293052612223893281
Offset: 1

Views

Author

Cino Hilliard, Sep 06 2003; corrected Jul 30 2004

Keywords

Comments

Previous Name: Primes found among the denominators of the continued fraction rational approximations to sqrt(2).
See A096650 for the indices. - Jon E. Schoenfield, Jan 25 2017
A056869 is essentially the same sequence. - Jianing Song, Jan 02 2019

Examples

			a(1) = 2 = A000129(2), a(2) = 5 = A000129(3), a(3) = 29 = A000129(5), etc. - _Zak Seidov_, Oct 21 2013 [Corrected by _Jianing Song_, Jan 02 2019]
		

Crossrefs

Programs

  • GAP
    f:=[0,1];; for n in [3..100] do f[n]:=2*f[n-1]+f[n-2]; od; a:=Filtered(f,IsPrime);; Print(a); # Muniru A Asiru, Jan 03 2019
  • Mathematica
    Select[Table[ChebyshevU[k,3]-ChebyshevU[k-1,3],{k,0,50}],PrimeQ] (* Ed Pegg Jr, May 10 2007 *)
    Select[Denominator[Convergents[Sqrt[2],150]],PrimeQ] (* Harvey P. Dale, Dec 19 2012 *)
    Select[LinearRecurrence[{2, 1}, {0, 1}, 16], PrimeQ] (* Zak Seidov, Oct 21 2013 *)
  • PARI
    \\ Continued fraction rational approximation of numeric constants f. m=steps.
    cfracdenomprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(denom),print1(denom,",")); ) }
    

Formula

a(n) = A000129(A096650(n)). - Jon E. Schoenfield, Jan 25 2017
a(n) = A056869(n-1), n > 1. - Jianing Song, Jan 02 2019

Extensions

Name changed (to a Comments entry from Zak Seidov, Oct 21 2013) by Jon E. Schoenfield, Jan 26 2017