A096650
Indices of prime Pell numbers.
Original entry on oeis.org
2, 3, 5, 11, 13, 29, 41, 53, 59, 89, 97, 101, 167, 181, 191, 523, 929, 1217, 1301, 1361, 2087, 2273, 2393, 8093, 13339, 14033, 23747, 28183, 34429, 36749, 90197
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Aug 15 2004
P(11)=5741, which is prime.
- Steve Fan and Paul Pollack, Extremal elasticity of quadratic orders, arXiv:2503.07801 [math.NT], 2025. See p. 17.
- J. L. Schiffman, Exploring the Fibonacci sequence of order two with CAS technology, Paper C027, Electronic Proceedings of the Twenty-fourth Annual International Conference on Technology in Collegiate Mathematics, Orlando, Florida, March 22-25, 2012. See p. 262. - _N. J. A. Sloane_, Mar 27 2014
- Eric Weisstein's World of Mathematics, Pell Number.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes .
-
Pell:= gfun:-rectoproc( {a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) + a(n-2)},a(n), remember):
select(t -> isprime(t) and isprime(Pell(t)), [2, seq(2*i+1, i=1..2000)]); # Robert Israel, Aug 28 2015
-
lst={}; a=0; b=1; Do[c=a+2b; a=b; b=c; If[PrimeQ[c], AppendTo[lst, n]], {n, 2, 10000}]; lst (* T. D. Noe, Aug 17 2004 *)
Flatten@ Position[#, p_ /; PrimeQ@ p] - 1 &@ CoefficientList[Series[x/(1 - 2 x - x^2), {x, 0, 5000}], x] (* Michael De Vlieger, Apr 29 2016, after Stefan Steinerberger at A000129 *)
A086395
Primes found among the numerators of the continued fraction rational approximations to sqrt(2).
Original entry on oeis.org
3, 7, 17, 41, 239, 577, 665857, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679
Offset: 1
- Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p 16.
-
Select[Numerator[Convergents[Sqrt[2],250]],PrimeQ] (* Harvey P. Dale, Oct 19 2011 *)
-
\Continued fraction rational approximation of numeric constants f. m=steps. cfracnumprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer),print1(numer,",")); ) }
-
primenum(n,k,typ) = \yp = 1 num, 2 denom. print only prime num or denom. { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) ); print(); print(a/b+.) }
A246556
a(n) = smallest prime which divides Pell(n) = A000129(n) but does not divide any Pell(k) for k
Original entry on oeis.org
2, 5, 3, 29, 7, 13, 17, 197, 41, 5741, 11, 33461, 239, 269, 577, 137, 199, 37, 19, 45697, 23, 229, 1153, 1549, 79, 53, 113, 44560482149, 31, 61, 665857, 52734529, 103, 1800193921, 73, 593, 9369319, 389, 241, 1746860020068409, 4663, 11437, 43, 6481, 47, 3761, 97, 293, 45245801, 101, 22307, 68480406462161287469, 7761799, 109, 1535466241
Offset: 2
a(2) = 2 because Pell(2) = 2 and Pell(k) < 2 for k < 2.
a(4) = 3 because Pell(4) = 12 = 2^2 * 3, but 2 is not a primitive prime factor since Pell(2) = 2, so therefore 3 is the primitive prime factor.
a(5) = 29 because Pell(5) = 29, which is prime.
a(6) = 7 because Pell(6) = 70 = 2 * 5 * 7, but neither 2 nor 5 is a primitive prime factor, so therefore 7 is the primitive prime factor.
a(17) = 137 because Pell(17) = 1136689 = 137 * 8297, and both of them are primitive factors, we choose the smallest. (Pell(17) is the smallest Pell number with more than one primitive prime factor.)
-
prms={}; Table[f=First/@FactorInteger[Pell[n]]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {n, 36}]
Terms a(613)-a(630) in b-file added by
Max Alekseyev, Aug 26 2021
A056869
Prime hypotenuses of Pythagorean triangles with consecutive integer sides.
Original entry on oeis.org
5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449, 4760981394323203445293052612223893281
Offset: 1
29 is included because it is prime and it is the hypotenuse of the 20, 21, 29 Pythagorean triangle.
-
f:=[1,5];; for n in [3..60] do f[n]:=6*f[n-1]-f[n-2]; od; a:=Filtered(f,IsPrime);; Print(a); # Muniru A Asiru, Jan 03 2019
-
f:= gfun:-rectoproc({a(n)=6*a(n-1)-a(n-2),a(1)=1,a(2)=5},a(n),remember):
select(isprime, [seq(f(n),n=1..1000)]); # Robert Israel, Oct 13 2015
-
Select[Sqrt[#^2+(#+1)^2]&/@With[{p=3+2Sqrt[2]},NestList[Floor[p #]+3&,3,120]],PrimeQ] (* Harvey P. Dale, May 02 2018 *)
-
t(n) = if(n<3, 5^(n-1), 6*t(n-1)-t(n-2));
for(n=1, 50, if(isprime(t(n)), print1(t(n)", "))) \\ Altug Alkan, Oct 13 2015
Incorrect link to index entries for linear recurrences with constant coefficients removed by
Colin Barker, Oct 13 2015
A118612
Denominator if the numerator and denominator of the continued fraction rational approximation of sqrt(2) are both prime.
Original entry on oeis.org
2, 5, 29, 44560482149, 13558774610046711780701
Offset: 1
-
For[n = 2, n < 1500, n++, a := Join[{1}, Table[2, {i, 2, n}]]; If[PrimeQ[Denominator[FromContinuedFraction[a]]], If[PrimeQ[Numerator[FromContinuedFraction[a]]], Print[Denominator[FromContinuedFraction[a]]]]]] (* Stefan Steinerberger, May 09 2006 *)
A164986
Numbers of the form 2p^2 = q^2 + 1, where p and q are primes.
Original entry on oeis.org
50, 1682, 3971273138702695316402, 367680737852094722224630791187352516632102802
Offset: 1
a(1) = 50 as 50 = 2*5^2 = 7^2 + 1, where 5 and 7 are prime.
Cf.
A088920,
A118612,
A086397,
A086395,
A002315 (NSW numbers),
A088165 (prime NSW numbers = prime RMS numbers (
A140480)),
A001653,
A000129 (Pell numbers),
A086383,
A101411,
A079704,
A002522,
A008843,
A104683,
A163742, etc.
A247250
Indices of Pell numbers having exactly one primitive prime factor.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 24, 29, 30, 32, 33, 35, 38, 41, 42, 50, 53, 54, 56, 58, 59, 66, 69, 89, 90, 94, 95, 97, 99, 101, 104, 117, 118, 120, 135, 138, 160, 167, 181, 191, 210, 221, 237, 242, 247
Offset: 1
Pell(1) = 1, which has no prime factors, so 1 is not in this sequence.
Pell(4) = 12 = 2^2 * 3, but 2 is not a primitive prime factor, and 3 is the only primitive prime factor of Pell(4), so 4 is in this sequence.
Pell(5) = 29, which is a prime and the only primitive prime factor of itself, so 5 is in this sequence.
Pell(12) = 13860 = 2^2 * 3^2 * 5 * 7 * 11, but none of 2, 3, 5, 7 is a primitive prime factor, and 11 is the only primitive prime factor of Pell(12), so 12 is in this sequence.
Pell(14) = 80782 = 2 * 13^2 * 239, but neither 2 nor 13 is a primitive prime factor, and 239 is the only primitive prime factor of Pell(14), so 14 is in this sequence.
Pell(19) = 6625109 = 37 * 179057, both of which are primitive prime factors of Pell(19), so 19 is not in this sequence.
Cf.
A152012 (for Fibonacci numbers).
-
Select[Range[1000], PrimePowerQ[(1-Sqrt[2])^EulerPhi[#]*Cyclotomic[#, (1+Sqrt[2])/(1-Sqrt[2])]/GCD[Cyclotomic[#, (1+Sqrt[2])/(1-Sqrt[2])], # ]]&] - Eric Chen, Dec 12 2014
pell[n_] := pell[n] = ((1+Sqrt[2])^n-(1-Sqrt[2])^n )/(2*Sqrt[2]) // Round; primitivePrimeFactors[n_] := Cases[FactorInteger[pell[n]][[All, 1]], p_ /; And @@ (GCD[p, #] == 1 & /@ Array[pell, n-1])]; Reap[For[n=2, n <= 200, n++, If[Length[primitivePrimeFactors[n]] == 1, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 12 2014 *)
-
pell(n) = imag((1 + quadgen(8))^n);
isok(pf, vp) = sum(i=1, #pf, vecsearch(vp, pf[i]) == 0) == 1;
lista(nn) = {vp = []; for (n=2, nn, pf = factor(pell(n))[,1]; if (isok(pf, vp), print1(n, ", ")); vp = vecsort(concat(vp, pf),, 8););} \\ Michel Marcus, Nov 29 2014
Two incorrect terms (72 and 110) deleted by
Colin Barker, Nov 29 2014
A305534
Index of the smallest prime in the n-Fibonacci sequence, or the Lucas U(n,-1) sequence.
Original entry on oeis.org
3, 2, 2, 3, 2, 3, 2, 5, 29, 3, 2, 5, 2, 3, 23, 3, 2, 7, 2, 3, 29, 19, 2, 3, 83, 3, 53, 19, 2, 5, 2, 5, 5, 5479, 71, 3, 2, 17, 11, 3, 2, 37, 2, 31, 5, 11, 2, 5
Offset: 1
Cf.
A001605,
A096650,
A209493, which are the indices of the primes in the n-Fibonacci sequence for n = 1, 2, 3.
Cf.
A000045,
A000129,
A006190,
A001076,
A052918,
A005668,
A054413,
A041025,
A099371,
A041041,
A049666,
A041061 (the n-Fibonacci sequence for n = 1 to 12).
Cf.
A302990 (for n-step Fibonacci sequence instead of n-Fibonacci sequence).
-
b(n,k)=([n,1;1,0]^k)[1,2]
a(n)=for(k=1,2^12,if(ispseudoprime(b(n,k)),return(k)))
Showing 1-8 of 8 results.
Comments