A086463 Decimal expansion of Pi^2/18.
5, 4, 8, 3, 1, 1, 3, 5, 5, 6, 1, 6, 0, 7, 5, 4, 7, 8, 8, 2, 4, 1, 3, 8, 3, 8, 8, 8, 8, 2, 0, 0, 8, 3, 9, 6, 4, 0, 6, 3, 1, 6, 6, 3, 3, 7, 3, 5, 5, 9, 9, 4, 7, 9, 2, 4, 5, 1, 8, 6, 0, 7, 6, 4, 5, 6, 6, 6, 9, 1, 5, 6, 8, 0, 1, 0, 6, 6, 9, 5, 7, 9, 4, 4, 5, 4, 2, 9, 6, 6, 8, 7, 3, 2, 5, 2, 9, 0, 1, 7, 6, 8
Offset: 0
Examples
0.548311355616075478824138388882008396406316633735...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
- A. Holroyd, Sharp Metastability Threshold for Two-Dimensional Bootstrap Percolation, Prob. Th. and Related Fields 125, 195-224, 2003.
Links
- J. M. Borwein and R. Girgensohn, Evaluations of binomial series, Aequat. Math. 70 (2005) 25-36.
- A. Holroyd, Sharp Metastability Threshold for Two-Dimensional Bootstrap Percolation, arXiv:math/0206132 [math.PR], 2002.
- Ji-Cai Liu, On two congruences involving Franel numbers, arXiv:2002.03650 [math.NT], 2020.
- Courtney Moen, Infinite series with binomial coefficients, Math. Mag. 64 (1) (1991) 53-55.
- Renzo Sprugnoli, Sums of reciprocals of the central binomial coefficients, El. J. Combin. Numb. Th. 6 (2006) # A27.
- Eric Weisstein's World of Mathematics, Bootstrap Percolation.
- Eric Weisstein's World of Mathematics, Central Binomial Coefficient.
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[Pi^2/18,10,120][[1]] (* Harvey P. Dale, Aug 14 2011 *)
-
PARI
Pi^2/18 \\ Charles R Greathouse IV, Mar 20 2012
Formula
Sum[1/n^2/Binomial[2n,n], {n,Infinity}].
Pi^2/18 = A013661/3 = Sum[1/(i+0)^2 - 1/(i+1)^2 - 2/(i+2)^2 - 1/(i+3)^2 + 1/(i+4)^2 + 2/(i+5)^2, {i =1, 7, 13, 19, 25,.. infinity, stride of 6}]. - Mats Granvik, Mar 19 2012
Equals Sum_{k>=1} (H(k) - 2*H(2k))/((-3^k)*k). See Liu. - Michel Marcus, Feb 11 2020
Equals Sum_{k>=1} A007814(k)/k^2. - Amiram Eldar, Jul 13 2020
Equals (2/9) * Sum_{k>=0} (-1)^k*(7*k+5)*k!^3/((2*k+1)*(3*k+2)!) [Gosper 1974] - R. J. Mathar, Feb 07 2024
Continued fraction expansion: 1/(2 - 2/(13 - 48/(34 - 270/(65 - ... - 2*(2*n - 1)*n^3/(5*n^2 + 6*n + 2 - ... ))))). See A130549. - Peter Bala, Feb 16 2024
Comments