A086580 a(n) = 9*(10^n - 1).
0, 81, 891, 8991, 89991, 899991, 8999991, 89999991, 899999991, 8999999991, 89999999991, 899999999991, 8999999999991, 89999999999991, 899999999999991, 8999999999999991, 89999999999999991, 899999999999999991, 8999999999999999991, 89999999999999999991, 899999999999999999991
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..990
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Programs
-
Magma
[9*(10^n -1): n in [0..30]]; // G. C. Greubel, Jul 07 2023
-
Mathematica
Table[9*(10^n-1), {n,0,30}] (* G. C. Greubel, Jul 07 2023 *)
-
SageMath
A086580=BinaryRecurrenceSequence(11,-10,0,81) [A086580(n) for n in range(30)] # G. C. Greubel, Jul 07 2023
Formula
R(a(n)) = A086573(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 81*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 9*exp(x)*(exp(9*x) - 1). - Elmo R. Oliveira, Sep 12 2024
Extensions
Name edited by Jinyuan Wang, Aug 04 2021
Comments