A086574
a(n) = 3*(10^n - 1).
Original entry on oeis.org
0, 27, 297, 2997, 29997, 299997, 2999997, 29999997, 299999997, 2999999997, 29999999997, 299999999997, 2999999999997, 29999999999997, 299999999999997, 2999999999999997, 29999999999999997, 299999999999999997, 2999999999999999997, 29999999999999999997, 299999999999999999997
Offset: 0
Cf. One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
Join[{0},Table[FromDigits[Join[PadRight[{2},n,9],{7}]],{n,20}]] (* or *) LinearRecurrence[{11,-10},{0,27},30] (* Harvey P. Dale, Nov 28 2015 *)
-
a(n)=10^n*3-3 \\ M. F. Hasler, Jul 29 2016
A086573
a(n) = 2*(10^n - 1).
Original entry on oeis.org
0, 18, 198, 1998, 19998, 199998, 1999998, 19999998, 199999998, 1999999998, 19999999998, 199999999998, 1999999999998, 19999999999998, 199999999999998, 1999999999999998, 19999999999999998, 199999999999999998, 1999999999999999998, 19999999999999999998, 199999999999999999998
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
A086578
a(n) = 7*(10^n - 1).
Original entry on oeis.org
0, 63, 693, 6993, 69993, 699993, 6999993, 69999993, 699999993, 6999999993, 69999999993, 699999999993, 6999999999993, 69999999999993, 699999999999993, 6999999999999993, 69999999999999993, 699999999999999993, 6999999999999999993, 69999999999999999993, 699999999999999999993
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
A086575
a(n) = 4*(10^n - 1).
Original entry on oeis.org
0, 36, 396, 3996, 39996, 399996, 3999996, 39999996, 399999996, 3999999996, 39999999996, 399999999996, 3999999999996, 39999999999996, 399999999999996, 3999999999999996, 39999999999999996, 399999999999999996, 3999999999999999996, 39999999999999999996, 399999999999999999996
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
LinearRecurrence[{11,-10},{0,36},20] (* Harvey P. Dale, May 14 2017 *)
A086576
a(n) = 5*(10^n - 1).
Original entry on oeis.org
0, 45, 495, 4995, 49995, 499995, 4999995, 49999995, 499999995, 4999999995, 49999999995, 499999999995, 4999999999995, 49999999999995, 499999999999995, 4999999999999995, 49999999999999995, 499999999999999995, 4999999999999999995, 49999999999999999995, 499999999999999999995
Offset: 0
From _John Elias_, Jun 23 2021: (Start)
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45;
11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99 = 495;
111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999 = 4995;
1111 + 2222 + 3333 + 4444 + 5555 + 6666 + 7777 + 8888 + 9999 = 49995;
11111 + 22222 + 33333 + 44444 + 55555 + 66666 + 77777 + 88888 + 99999 = 499995; etc. (End)
Cf. One of family of sequences of form a(n)=k, where R(k+m)=m, m = 1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
Join[{0}, LinearRecurrence[{11,-10},{45,495},50]] (* G. C. Greubel, Jul 08 2016 *)
A086577
a(n) = 6*(10^n - 1).
Original entry on oeis.org
0, 54, 594, 5994, 59994, 599994, 5999994, 59999994, 599999994, 5999999994, 59999999994, 599999999994, 5999999999994, 59999999999994, 599999999999994, 5999999999999994, 59999999999999994, 599999999999999994, 5999999999999999994, 59999999999999999994, 599999999999999999994
Offset: 0
-
LinearRecurrence[{11,-10},{0,54},30] (* Harvey P. Dale, Nov 27 2022 *)
A086579
a(n) = 8*(10^n - 1).
Original entry on oeis.org
0, 72, 792, 7992, 79992, 799992, 7999992, 79999992, 799999992, 7999999992, 79999999992, 799999999992, 7999999999992, 79999999999992, 799999999999992, 7999999999999992, 79999999999999992, 799999999999999992, 7999999999999999992, 79999999999999999992, 799999999999999999992
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
LinearRecurrence[{11,-10},{0,72},30] (* Harvey P. Dale, Mar 22 2025 *)
A328683
Positive integers that are equal to 99...99 (repdigit with n digits 9) times the sum of their digits.
Original entry on oeis.org
81, 1782, 26973, 359964, 4499955, 53999946, 629999937, 7199999928, 80999999919, 899999999910, 9899999999901, 107999999999892, 1169999999999883, 12599999999999874, 134999999999999865, 1439999999999999856, 15299999999999999847, 161999999999999999838
Offset: 1
359964 = 36 * 9999 and the digital sum of 359964 = 36 , so 359964 = a(4).
- Roman Fedorov, Alexei Belov, Alexander Kovaldzhi, Ivan Yashchenko, Moscow Mathematical Olympiads, 2000-2005, Level B, Problem 5, 2001, MSRI, 2011, p. 8 and 70/71.
-
C:=seq(9*n*(10^n-1),n=1..20);
-
Table[9*n*(10^n - 1), {n, 1, 18}] (* Amiram Eldar, Feb 25 2020 *)
LinearRecurrence[{22,-141,220,-100},{81,1782,26973,359964},20] (* Harvey P. Dale, Feb 02 2025 *)
-
Vec(81*x*(1 - 10*x^2) / ((1 - x)^2*(1 - 10*x)^2) + O(x^20)) \\ Colin Barker, Feb 25 2020
Showing 1-8 of 8 results.
Comments