cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A074992 a(n) = (10^(2*n) + 10^n + 1)/3.

Original entry on oeis.org

1, 37, 3367, 333667, 33336667, 3333366667, 333333666667, 33333336666667, 3333333366666667, 333333333666666667, 33333333336666666667, 3333333333366666666667, 333333333333666666666667, 33333333333336666666666667, 3333333333333366666666666667, 333333333333333666666666666667
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Comments

Apart from the initial 1, common difference of the arithmetic progression pertaining to the sequence A074991.
This is also a root sequence pertaining to the patterned perfect square sequence 1369, 11336689,111333666889,... i.e., k ones, k threes and k sixes followed by (k-1) 8's and a 9. (37^2 = 1369).
This is a self-complementing sequence: each term has even number of digits (the first one has to be read 01, the leading zero is important). If you add the first half to the second half of any term, you get the sequence A011557, powers of 10. Furthermore, the reciprocals of the sequence terms, except the first one, give a sequence of periodic terms with period sequence as in A008585, a(n) = 3*n, and value given by A086574, a(n)=k where R(k+3)=3. - Rodolfo A. Fiorini, Jul 14 2016

Crossrefs

Programs

  • Maple
    A074992 := proc(n)
        (10^(2*n)+10^n+1)/3 ;
    end proc:
    seq(A074992(n),n=0..15) ; # R. J. Mathar, May 06 2017
  • Mathematica
    {01}~Join~Table[FromDigits@ Flatten@ Map[IntegerDigits, {#, 10^n - #}] &@ Floor[10^n/3], {n, 12}] (* Michael De Vlieger, Jul 22 2016 *)
  • PARI
    a(n) = (10^(2*n) + 10^n + 1)/3; \\ Michel Marcus, Sep 14 2013
    
  • PARI
    Vec(-x*(1000*x^2-740*x+37)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2013
    
  • PARI
    a(n)=my(x=10^n); (x^2+x+1)/3 \\ Charles R Greathouse IV, Jul 22 2016

Formula

a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3), for n > 2, a(0)=1, a(1)=37, a(2)=3367.
G.f.: (1 - 74*x + 370*x^2)/((1-x)*(1-10*x)*(1-100*x)). - Colin Barker, Sep 23 2013 and Robert Israel, Jul 22 2016
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(x)*(exp(99*x) + exp(9*x) + 1)/3.
a(n) = A066138(n)/3. (End)

Extensions

Entry revised (new definition, new offset, new initial term, etc.) by N. J. A. Sloane, Jul 27 2016 (Some of the old programs may need slight modifications.)

A086573 a(n) = 2*(10^n - 1).

Original entry on oeis.org

0, 18, 198, 1998, 19998, 199998, 1999998, 19999998, 199999998, 1999999998, 19999999998, 199999999998, 1999999999998, 19999999999998, 199999999999998, 1999999999999998, 19999999999999998, 199999999999999998, 1999999999999999998, 19999999999999999998, 199999999999999999998
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+2) = 2.

Crossrefs

Cf. A002275, A004086 (R(n)), A083812.
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.

Formula

a(n) = 2*9*A002275(n) = 2*A002283(n).
R(a(n)) = A086580(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 18*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 2*exp(x)*(exp(9*x) - 1). - Elmo R. Oliveira, Sep 12 2024

Extensions

Edited by Jinyuan Wang, Aug 04 2021

A086578 a(n) = 7*(10^n - 1).

Original entry on oeis.org

0, 63, 693, 6993, 69993, 699993, 6999993, 69999993, 699999993, 6999999993, 69999999993, 699999999993, 6999999999993, 69999999999993, 699999999999993, 6999999999999993, 69999999999999993, 699999999999999993, 6999999999999999993, 69999999999999999993, 699999999999999999993
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+7) = 7.

Crossrefs

Cf. A002275, A004086 (R(n)).
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.
Sequences of the form m*10^n - 7: 3*A033175 (m=1, 10), A086943 (m=3), 3*A185127 (m=4), this sequence (m=7), A100412 (m=8).

Programs

  • Magma
    [7*(10^n -1): n in [0..20]]; // G. C. Greubel, Apr 14 2023
    
  • Mathematica
    LinearRecurrence[{11,-10}, {0,63}, 31] (* G. C. Greubel, Apr 14 2023 *)
  • SageMath
    [7*(10^n -1) for n in range(21)] # G. C. Greubel, Apr 14 2023

Formula

a(n) = 7*9*A002275(n) = 7*A002283(n).
R(a(n)) = A086575(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 63*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 7*(exp(10*x) - exp(x)). - G. C. Greubel, Apr 14 2023

Extensions

Edited by Jinyuan Wang, Aug 04 2021

A086580 a(n) = 9*(10^n - 1).

Original entry on oeis.org

0, 81, 891, 8991, 89991, 899991, 8999991, 89999991, 899999991, 8999999991, 89999999991, 899999999991, 8999999999991, 89999999999991, 899999999999991, 8999999999999991, 89999999999999991, 899999999999999991, 8999999999999999991, 89999999999999999991, 899999999999999999991
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+9) = 9.

Crossrefs

Cf. A002275, A004086 (R(n)), A086573.
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.

Programs

Formula

a(n) = 9*9*A002275(n) = 9*A002283(n).
R(a(n)) = A086573(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 81*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 9*exp(x)*(exp(9*x) - 1). - Elmo R. Oliveira, Sep 12 2024

Extensions

Name edited by Jinyuan Wang, Aug 04 2021

A086575 a(n) = 4*(10^n - 1).

Original entry on oeis.org

0, 36, 396, 3996, 39996, 399996, 3999996, 39999996, 399999996, 3999999996, 39999999996, 399999999996, 3999999999996, 39999999999996, 399999999999996, 3999999999999996, 39999999999999996, 399999999999999996, 3999999999999999996, 39999999999999999996, 399999999999999999996
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+4) = 4.

Crossrefs

Cf. A002275, A004086 (R(n)), A083811.
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.

Programs

  • Mathematica
    LinearRecurrence[{11,-10},{0,36},20] (* Harvey P. Dale, May 14 2017 *)

Formula

a(n) = 4*9*A002275(n) = 4*A002283(n).
R(a(n)) = A086578(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 36*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 4*exp(x)*(exp(9*x) - 1). - Elmo R. Oliveira, Sep 12 2024

Extensions

Edited by Jinyuan Wang, Aug 04 2021

A086576 a(n) = 5*(10^n - 1).

Original entry on oeis.org

0, 45, 495, 4995, 49995, 499995, 4999995, 49999995, 499999995, 4999999995, 49999999995, 499999999995, 4999999999995, 49999999999995, 499999999999995, 4999999999999995, 49999999999999995, 499999999999999995, 4999999999999999995, 49999999999999999995, 499999999999999999995
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+5) = 5.

Examples

			From _John Elias_, Jun 23 2021: (Start)
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45;
11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99 = 495;
111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999 = 4995;
1111 + 2222 + 3333 + 4444 + 5555 + 6666 + 7777 + 8888 + 9999 = 49995;
11111 + 22222 + 33333 + 44444 + 55555 + 66666 + 77777 + 88888 + 99999 = 499995; etc. (End)
		

Crossrefs

Cf. A002275, A004086 (R(n)).
Cf. One of family of sequences of form a(n)=k, where R(k+m)=m, m = 1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{11,-10},{45,495},50]] (* G. C. Greubel, Jul 08 2016 *)

Formula

a(n) = 5*9*A002275(n) = 5*A002283(n).
R(a(n)) = A086577(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 45*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 5*exp(x)*(exp(9*x) - 1). - Elmo R. Oliveira, Sep 12 2024

Extensions

Name edited by Jinyuan Wang, Aug 04 2021

A086577 a(n) = 6*(10^n - 1).

Original entry on oeis.org

0, 54, 594, 5994, 59994, 599994, 5999994, 59999994, 599999994, 5999999994, 59999999994, 599999999994, 5999999999994, 59999999999994, 599999999999994, 5999999999999994, 59999999999999994, 599999999999999994, 5999999999999999994, 59999999999999999994, 599999999999999999994
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+6) = 6.

Crossrefs

Cf. A002275, A004086 (R(n)).
One of a family of sequences of the form "Numbers k such that reverse(k+m) = m", m = 1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.

Programs

  • Mathematica
    LinearRecurrence[{11,-10},{0,54},30] (* Harvey P. Dale, Nov 27 2022 *)

Formula

a(n) = 6*9*A002275(n) = 6*A002283(n).
R(a(n)) = A086576(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 54*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 6*exp(x)*(exp(9*x) - 1). - Elmo R. Oliveira, Sep 12 2024

Extensions

Name edited by Jinyuan Wang, Aug 04 2021

A086579 a(n) = 8*(10^n - 1).

Original entry on oeis.org

0, 72, 792, 7992, 79992, 799992, 7999992, 79999992, 799999992, 7999999992, 79999999992, 799999999992, 7999999999992, 79999999999992, 799999999999992, 7999999999999992, 79999999999999992, 799999999999999992, 7999999999999999992, 79999999999999999992, 799999999999999999992
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+8) = 8.

Crossrefs

Cf. A002275, A004086 (R(n)).
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.

Programs

  • Mathematica
    LinearRecurrence[{11,-10},{0,72},30] (* Harvey P. Dale, Mar 22 2025 *)

Formula

a(n) = 8*9*A002275(n) = 8*A002283(n).
R(a(n)) = A086574(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 72*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 8*exp(x)*(exp(9*x) - 1). - Elmo R. Oliveira, Sep 12 2024

Extensions

Edited by Jinyuan Wang, Aug 04 2021

A173766 a(n) = (10^n+11)/3.

Original entry on oeis.org

7, 37, 337, 3337, 33337, 333337, 3333337, 33333337, 333333337, 3333333337, 33333333337, 333333333337, 3333333333337, 33333333333337, 333333333333337, 3333333333333337, 33333333333333337, 333333333333333337, 3333333333333333337, 33333333333333333337
Offset: 1

Views

Author

Vincenzo Librandi, Feb 24 2010

Keywords

Examples

			For n=2, a(2)=10*7-33=37; n=3, a(3)=10*37-33=337; n=4, a(4)=10*337-33=3337.
		

Crossrefs

Cf. A093168.
Cf. A086574, A163449. - Bruno Berselli, Jun 09 2010

Programs

  • Mathematica
    NestList[10#-33&,7,20] (* Harvey P. Dale, Aug 01 2022 *)

Formula

a(n) = 10*a(n-1)-33 (with a(1) = 7).
From Bruno Berselli, Jun 09 2010: (Start)
G.f.: x*(7-40*x)/((1-x)*(1-10*x)).
a(n)-11*a(n-1)+10*a(n-2) = 0 for n>2. (End)

Extensions

I reduced the fraction in the definition to "(10^n+11)/3". The factor 3 was simply irrelevant. - Ivan Panchenko, Jun 05 2010

A083813 a(n) = 3*(10^n-1).

Original entry on oeis.org

27, 297, 2997, 29997, 299997, 2999997, 29999997, 299999997, 2999999997, 29999999997, 299999999997, 2999999999997, 29999999999997, 299999999999997
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 08 2003

Keywords

Comments

Original definition: 3n+1 is the digit reversal of n+1.
1. a(n) = 27 + 270 + 2700 + ... up to n terms = sum of n terms of the geometric progression with the first term 27 and common ratio 10.
2. a(n) = 27*A000042(n) (the unary sequence).
Equals A086574 restricted to positive indices. See that entry for many more comments, formulas and references. - M. F. Hasler, Jul 29 2016

Crossrefs

Essentially a duplicate of A086574.

Programs

  • Mathematica
    3(10^Range[20]-1) (* or *) Table[10 FromDigits[PadRight[{2},n,9]]+7,{n,20}] (* Harvey P. Dale, Jan 25 2020 *)

Extensions

Edited by M. F. Hasler, Jul 29 2016
Showing 1-10 of 10 results.