A074992
a(n) = (10^(2*n) + 10^n + 1)/3.
Original entry on oeis.org
1, 37, 3367, 333667, 33336667, 3333366667, 333333666667, 33333336666667, 3333333366666667, 333333333666666667, 33333333336666666667, 3333333333366666666667, 333333333333666666666667, 33333333333336666666666667, 3333333333333366666666666667, 333333333333333666666666666667
Offset: 0
-
A074992 := proc(n)
(10^(2*n)+10^n+1)/3 ;
end proc:
seq(A074992(n),n=0..15) ; # R. J. Mathar, May 06 2017
-
{01}~Join~Table[FromDigits@ Flatten@ Map[IntegerDigits, {#, 10^n - #}] &@ Floor[10^n/3], {n, 12}] (* Michael De Vlieger, Jul 22 2016 *)
-
a(n) = (10^(2*n) + 10^n + 1)/3; \\ Michel Marcus, Sep 14 2013
-
Vec(-x*(1000*x^2-740*x+37)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2013
-
a(n)=my(x=10^n); (x^2+x+1)/3 \\ Charles R Greathouse IV, Jul 22 2016
Entry revised (new definition, new offset, new initial term, etc.) by
N. J. A. Sloane, Jul 27 2016 (Some of the old programs may need slight modifications.)
A086573
a(n) = 2*(10^n - 1).
Original entry on oeis.org
0, 18, 198, 1998, 19998, 199998, 1999998, 19999998, 199999998, 1999999998, 19999999998, 199999999998, 1999999999998, 19999999999998, 199999999999998, 1999999999999998, 19999999999999998, 199999999999999998, 1999999999999999998, 19999999999999999998, 199999999999999999998
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
A086578
a(n) = 7*(10^n - 1).
Original entry on oeis.org
0, 63, 693, 6993, 69993, 699993, 6999993, 69999993, 699999993, 6999999993, 69999999993, 699999999993, 6999999999993, 69999999999993, 699999999999993, 6999999999999993, 69999999999999993, 699999999999999993, 6999999999999999993, 69999999999999999993, 699999999999999999993
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
A086580
a(n) = 9*(10^n - 1).
Original entry on oeis.org
0, 81, 891, 8991, 89991, 899991, 8999991, 89999991, 899999991, 8999999991, 89999999991, 899999999991, 8999999999991, 89999999999991, 899999999999991, 8999999999999991, 89999999999999991, 899999999999999991, 8999999999999999991, 89999999999999999991, 899999999999999999991
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
A086575
a(n) = 4*(10^n - 1).
Original entry on oeis.org
0, 36, 396, 3996, 39996, 399996, 3999996, 39999996, 399999996, 3999999996, 39999999996, 399999999996, 3999999999996, 39999999999996, 399999999999996, 3999999999999996, 39999999999999996, 399999999999999996, 3999999999999999996, 39999999999999999996, 399999999999999999996
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
LinearRecurrence[{11,-10},{0,36},20] (* Harvey P. Dale, May 14 2017 *)
A086576
a(n) = 5*(10^n - 1).
Original entry on oeis.org
0, 45, 495, 4995, 49995, 499995, 4999995, 49999995, 499999995, 4999999995, 49999999995, 499999999995, 4999999999995, 49999999999995, 499999999999995, 4999999999999995, 49999999999999995, 499999999999999995, 4999999999999999995, 49999999999999999995, 499999999999999999995
Offset: 0
From _John Elias_, Jun 23 2021: (Start)
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45;
11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99 = 495;
111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999 = 4995;
1111 + 2222 + 3333 + 4444 + 5555 + 6666 + 7777 + 8888 + 9999 = 49995;
11111 + 22222 + 33333 + 44444 + 55555 + 66666 + 77777 + 88888 + 99999 = 499995; etc. (End)
Cf. One of family of sequences of form a(n)=k, where R(k+m)=m, m = 1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
Join[{0}, LinearRecurrence[{11,-10},{45,495},50]] (* G. C. Greubel, Jul 08 2016 *)
A086577
a(n) = 6*(10^n - 1).
Original entry on oeis.org
0, 54, 594, 5994, 59994, 599994, 5999994, 59999994, 599999994, 5999999994, 59999999994, 599999999994, 5999999999994, 59999999999994, 599999999999994, 5999999999999994, 59999999999999994, 599999999999999994, 5999999999999999994, 59999999999999999994, 599999999999999999994
Offset: 0
-
LinearRecurrence[{11,-10},{0,54},30] (* Harvey P. Dale, Nov 27 2022 *)
A086579
a(n) = 8*(10^n - 1).
Original entry on oeis.org
0, 72, 792, 7992, 79992, 799992, 7999992, 79999992, 799999992, 7999999992, 79999999992, 799999999992, 7999999999992, 79999999999992, 799999999999992, 7999999999999992, 79999999999999992, 799999999999999992, 7999999999999999992, 79999999999999999992, 799999999999999999992
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
LinearRecurrence[{11,-10},{0,72},30] (* Harvey P. Dale, Mar 22 2025 *)
A173766
a(n) = (10^n+11)/3.
Original entry on oeis.org
7, 37, 337, 3337, 33337, 333337, 3333337, 33333337, 333333337, 3333333337, 33333333337, 333333333337, 3333333333337, 33333333333337, 333333333333337, 3333333333333337, 33333333333333337, 333333333333333337, 3333333333333333337, 33333333333333333337
Offset: 1
For n=2, a(2)=10*7-33=37; n=3, a(3)=10*37-33=337; n=4, a(4)=10*337-33=3337.
I reduced the fraction in the definition to "(10^n+11)/3". The factor 3 was simply irrelevant. -
Ivan Panchenko, Jun 05 2010
A083813
a(n) = 3*(10^n-1).
Original entry on oeis.org
27, 297, 2997, 29997, 299997, 2999997, 29999997, 299999997, 2999999997, 29999999997, 299999999997, 2999999999997, 29999999999997, 299999999999997
Offset: 1
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 08 2003
Essentially a duplicate of
A086574.
-
3(10^Range[20]-1) (* or *) Table[10 FromDigits[PadRight[{2},n,9]]+7,{n,20}] (* Harvey P. Dale, Jan 25 2020 *)
Showing 1-10 of 10 results.
Comments