A093168 Primes of the form 30*R_k + 7, where R_k is the repunit (A002275) of length k.
7, 37, 337, 333337, 3333333333333333333333333333333333333333333337
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The number of distinct prime divisors of 37 is 1 (prime). The number of distinct prime divisors of 337 is 1 (prime). The number of distinct prime divisors of 3337 is 2.
Table[Length[FactorInteger[(10^(n + 1) - 1)/3 + 4]], {n, 1, 50}] (* Stefan Steinerberger, Mar 06 2006 *)
List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
[(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *) LinearRecurrence[{11,-10},{2,7},20] (* Harvey P. Dale, Feb 28 2017 *)
vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
[(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
3^3 == 7 (mod 10). 33^3 == 37 (mod 10^2). 233^3 == 337 (mod 10^3). 2233^3 == 3337 (mod 10^4). 52233^3 == 33337 (mod 10^5). 852233^3 == 333337 (mod 10^6).
Comments