A086574
a(n) = 3*(10^n - 1).
Original entry on oeis.org
0, 27, 297, 2997, 29997, 299997, 2999997, 29999997, 299999997, 2999999997, 29999999997, 299999999997, 2999999999997, 29999999999997, 299999999999997, 2999999999999997, 29999999999999997, 299999999999999997, 2999999999999999997, 29999999999999999997, 299999999999999999997
Offset: 0
Cf. One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
Join[{0},Table[FromDigits[Join[PadRight[{2},n,9],{7}]],{n,20}]] (* or *) LinearRecurrence[{11,-10},{0,27},30] (* Harvey P. Dale, Nov 28 2015 *)
-
a(n)=10^n*3-3 \\ M. F. Hasler, Jul 29 2016
A086573
a(n) = 2*(10^n - 1).
Original entry on oeis.org
0, 18, 198, 1998, 19998, 199998, 1999998, 19999998, 199999998, 1999999998, 19999999998, 199999999998, 1999999999998, 19999999999998, 199999999999998, 1999999999999998, 19999999999999998, 199999999999999998, 1999999999999999998, 19999999999999999998, 199999999999999999998
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
A086580
a(n) = 9*(10^n - 1).
Original entry on oeis.org
0, 81, 891, 8991, 89991, 899991, 8999991, 89999991, 899999991, 8999999991, 89999999991, 899999999991, 8999999999991, 89999999999991, 899999999999991, 8999999999999991, 89999999999999991, 899999999999999991, 8999999999999999991, 89999999999999999991, 899999999999999999991
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
A086575
a(n) = 4*(10^n - 1).
Original entry on oeis.org
0, 36, 396, 3996, 39996, 399996, 3999996, 39999996, 399999996, 3999999996, 39999999996, 399999999996, 3999999999996, 39999999999996, 399999999999996, 3999999999999996, 39999999999999996, 399999999999999996, 3999999999999999996, 39999999999999999996, 399999999999999999996
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
LinearRecurrence[{11,-10},{0,36},20] (* Harvey P. Dale, May 14 2017 *)
A086576
a(n) = 5*(10^n - 1).
Original entry on oeis.org
0, 45, 495, 4995, 49995, 499995, 4999995, 49999995, 499999995, 4999999995, 49999999995, 499999999995, 4999999999995, 49999999999995, 499999999999995, 4999999999999995, 49999999999999995, 499999999999999995, 4999999999999999995, 49999999999999999995, 499999999999999999995
Offset: 0
From _John Elias_, Jun 23 2021: (Start)
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45;
11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99 = 495;
111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999 = 4995;
1111 + 2222 + 3333 + 4444 + 5555 + 6666 + 7777 + 8888 + 9999 = 49995;
11111 + 22222 + 33333 + 44444 + 55555 + 66666 + 77777 + 88888 + 99999 = 499995; etc. (End)
Cf. One of family of sequences of form a(n)=k, where R(k+m)=m, m = 1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
Join[{0}, LinearRecurrence[{11,-10},{45,495},50]] (* G. C. Greubel, Jul 08 2016 *)
A086577
a(n) = 6*(10^n - 1).
Original entry on oeis.org
0, 54, 594, 5994, 59994, 599994, 5999994, 59999994, 599999994, 5999999994, 59999999994, 599999999994, 5999999999994, 59999999999994, 599999999999994, 5999999999999994, 59999999999999994, 599999999999999994, 5999999999999999994, 59999999999999999994, 599999999999999999994
Offset: 0
-
LinearRecurrence[{11,-10},{0,54},30] (* Harvey P. Dale, Nov 27 2022 *)
A086579
a(n) = 8*(10^n - 1).
Original entry on oeis.org
0, 72, 792, 7992, 79992, 799992, 7999992, 79999992, 799999992, 7999999992, 79999999992, 799999999992, 7999999999992, 79999999999992, 799999999999992, 7999999999999992, 79999999999999992, 799999999999999992, 7999999999999999992, 79999999999999999992, 799999999999999999992
Offset: 0
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1:
A002283, m=2:
A086573, m=3:
A086574, m=4:
A086575, m=5:
A086576, m=6:
A086577, m=7:
A086578, m=8:
A086579, m=9:
A086580.
-
LinearRecurrence[{11,-10},{0,72},30] (* Harvey P. Dale, Mar 22 2025 *)
A100412
a(n) = 8*10^n - 7.
Original entry on oeis.org
1, 73, 793, 7993, 79993, 799993, 7999993, 79999993, 799999993, 7999999993, 79999999993, 799999999993, 7999999999993, 79999999999993, 799999999999993, 7999999999999993, 79999999999999993, 799999999999999993
Offset: 0
793 is in the sequence because 793 is 397th odd number.
1 is in the sequence because 1 is the 1st odd number. - _M. F. Hasler_, Nov 03 2012
-
[8*10^n -7: n in [0..20]]; // G. C. Greubel, Apr 14 2023
-
Table[8*10^n-7, {n,0,20}]
-
A100412(n):=8*10^n-7$
makelist(A100412(n),n,0,17); /* Martin Ettl, Nov 08 2012 */
-
Vec((1+62*x)/((1-x)*(1-10*x)) + O(x^100)) \\ Colin Barker, Oct 14 2014
-
[8*10^n -7 for n in range(21)] # G. C. Greubel, Apr 14 2023
Edited and extended to offset 0 by
M. F. Hasler, Nov 03 2012
Showing 1-8 of 8 results.
Comments