A086598 Number of distinct prime factors in Lucas(n).
1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 3, 1, 1, 3, 1, 2, 3, 3, 2, 3, 3, 2, 3, 2, 2, 4, 1, 2, 3, 3, 4, 4, 1, 2, 4, 3, 1, 5, 2, 4, 6, 3, 1, 4, 2, 4, 4, 3, 1, 4, 4, 2, 4, 3, 3, 6, 1, 2, 6, 2, 5, 5, 2, 2, 5, 4, 1, 4, 2, 3, 7, 2, 4, 4, 1, 2, 5, 4, 2, 6, 4, 2, 5, 3, 2, 6, 3, 3, 4, 4, 5, 4, 2, 4, 7, 4, 3, 6, 3, 4, 9
Offset: 0
Links
- Max Alekseyev, Table of n, a(n) for n = 0..1411 (first 1000 terms from T. D. Noe)
- Blair Kelly, Fibonacci and Lucas Factorizations
- Eric Weisstein's World of Mathematics, Lucas Number
Crossrefs
Programs
-
Magma
[#PrimeDivisors(Lucas(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
-
Mathematica
Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; Table[Length[FactorInteger[Lucas[n]]], {n, 150}]
-
PARI
a(n)=omega(fibonacci(n-1)+fibonacci(n+1)) \\ Charles R Greathouse IV, Sep 14 2015
Formula
a(n) = Sum{d|n and n/d odd} A086600(d) + 1 if 6|n, a Mobius-like transform
Extensions
a(0)=1 prepended by Max Alekseyev, Jun 15 2025
Comments