A086660 Stirling transform of Hermite numbers: Sum_{k=0..n} Stirling2(n,k) * HermiteH(k,0).
1, 0, -2, -6, -2, 90, 598, 1554, -10082, -164310, -1101242, -1496286, 64767118, 965876730, 7104497398, 57428274, -856472198402, -14195316779190, -122409183339482, 25272908324034, 21770258523698158
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-(Exp(x)-1)^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 12 2018 -
Mathematica
Table[Sum[StirlingS2[n,k]HermiteH[k,0],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 24 2013 *) With[{nmax = 50}, CoefficientList[Series[Exp[-(Exp[x] - 1)^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 12 2018 *)
-
PARI
x='x+O('x^50); Vec(serlaplace(exp(-(exp(x)-1)^2))) \\ G. C. Greubel, Jul 12 2018
Formula
E.g.f.: exp(-(exp(x)-1)^2).