cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086666 a(n) = sigma_2(n) - sigma_1(n).

Original entry on oeis.org

0, 2, 6, 14, 20, 38, 42, 70, 78, 112, 110, 182, 156, 226, 236, 310, 272, 416, 342, 504, 468, 574, 506, 790, 620, 808, 780, 994, 812, 1228, 930, 1302, 1172, 1396, 1252, 1820, 1332, 1750, 1644, 2120, 1640, 2404, 1806, 2478, 2288, 2578, 2162, 3286, 2394, 3162
Offset: 1

Views

Author

Jon Perry, Jul 27 2003

Keywords

Comments

Total area of all distinct L X W rectangles such that s + t = n, 1 <= s <= t, s | n, L = n/s and W = t/s. - Wesley Ivan Hurt, Aug 01 2025

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[2,n]-DivisorSigma[1,n],{n,50}] (* Harvey P. Dale, Aug 01 2020 *)
  • PARI
    a(n) = sigma(n,2)-sigma(n,1);
    
  • PARI
    a(n) = my(f = factor(n)); sigma(f, 2) - sigma(f); \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{n>=1} n*(n-1) * x^n/(1-x^n). - Joerg Arndt, Jan 30 2011
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k-1)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Peter Bala, Jan 21 2021: (Start)
a(n) = 2*A069153(n).
G.f.: A(x) = Sum_{n >= 1} 2*x^(2*n)/(1 - x^n)^3.
A faster converging series: A(x) = Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3 - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)).
Sum_{k=1..n} a(k) ~ (zeta(3)/3) * n^3. (End)
a(n) = Sum_{d|n} d*(d-1). - Wesley Ivan Hurt, Aug 01 2025