cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A251794 Decimal expansion of a constant related to A086714.

Original entry on oeis.org

1, 2, 8, 0, 4, 9, 7, 8, 0, 8, 5, 4, 1, 6, 5, 7, 0, 6, 6, 6, 8, 5, 3, 2, 3, 4, 6, 0, 2, 0, 9, 0, 8, 9, 2, 7, 8, 7, 8, 2, 0, 4, 0, 1, 9, 6, 5, 2, 2, 9, 5, 4, 8, 9, 1, 3, 5, 8, 2, 4, 6, 1, 0, 2, 6, 4, 3, 2, 0, 1, 8, 5, 7, 4, 7, 0, 1, 9, 2, 0, 5, 3, 7, 9, 3, 7, 2, 1, 1, 4, 2, 6, 9, 9, 4, 5, 6, 6, 5, 3, 4, 0, 2, 6, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 09 2014

Keywords

Examples

			1.2804978085416570666853234602090892787820401965229548913582461026432...
		

Crossrefs

Programs

  • Mathematica
    exact = 32; terms = 200; b = ConstantArray[0, terms]; b[[1]] = N[Log[4], 100]; Do[b[[n]] = b[[n - 1]] + If[n > exact, b[[n - 1]], Log[Exp[b[[n - 1]]] - 1]] - Log[2], {n, 2, terms}]; Do[Print[Exp[b[[n]]/2^n]], {n, 1, Length[b]}] (* after Jon E. Schoenfield *)

Formula

Equals limit n->infinity A086714(n)^(1/2^n).

A013589 a(n+1) = a(n)*(a(n)+1)/2.

Original entry on oeis.org

4, 10, 55, 1540, 1186570, 703974775735, 247790242435923759782980, 30700002123226936025189367747945843590228731690, 471245065183069190019624521318729501785547966685566656416776916445985874756815447988119493895
Offset: 0

Views

Author

Carl Bellinger (carlb(AT)ctron.com)

Keywords

Crossrefs

Programs

  • Haskell
    a013589 n = a013589_list !! n
    a013589_list = iterate a000217 4  -- Reinhard Zumkeller, Apr 10 2014
  • Maple
    f := proc(n) options remember; if n = 0 then 4 else 1/2*f(n-1)*(f(n-1)+1) fi end
  • Mathematica
    a=4;lst={a};Do[b=(a+1)*a/2;AppendTo[lst,b];a=b,{n,1,9}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 16 2010 *)
    NestList[# (#+1)/2&,4,10] (* Harvey P. Dale, Sep 20 2012 *)

Formula

a(n) ~ 2 * c^(2^n), where c = 2.29524458756644851072790131811443639562180382439442714497... . - Vaclav Kotesovec, Dec 17 2014

Extensions

One more term from Vladimir Joseph Stephan Orlovsky, Mar 16 2010

A251702 a(1)=5, a(n) = a(n-1)*(a(n-1)-1)*(a(n-1)-2)/6.

Original entry on oeis.org

5, 10, 120, 280840, 3691654113991480, 8385167839605753859676710992399730619003333960
Offset: 1

Views

Author

Frank M Jackson, Dec 07 2014

Keywords

Comments

In general, sequence a(n) = binomial(a(n-1),k) is asymptotic to (k!)^(1/(k-1)) * c^(k^n), where the constant c is dependent on k and a(1). For big a(1), c asymptotically approaches (a(1)/(k!)^(1/(k-1)))^(1/k). - Vaclav Kotesovec, Dec 09 2014

Examples

			a(2) = a(1)*(a(1)-1)*(a(1)-2)/6 = 5*4*3/6 = 10.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1] == 5, a[n] == a[n - 1](a[n - 1] - 1)(a[n - 1] - 2)/6}, a[n], {n, 10}]

Formula

Limit_{n->oo} a(n)^(1/3^n) = 1.1546796279605837888382808629570944052320556413... (see A251792).
a(n) ~ sqrt(6) * A251792^(3^n). - Vaclav Kotesovec, Dec 09 2014
a(n) = binomial(a(n-1),3) for n >= 1. - Shel Kaphan, Feb 06 2023

A251792 Decimal expansion of a constant related to A251702.

Original entry on oeis.org

1, 1, 5, 4, 6, 7, 9, 6, 2, 7, 9, 6, 0, 5, 8, 3, 7, 8, 8, 8, 3, 8, 2, 8, 0, 8, 6, 2, 9, 5, 7, 0, 9, 4, 4, 0, 5, 2, 3, 2, 0, 5, 5, 6, 4, 1, 3, 0, 0, 0, 5, 9, 3, 1, 4, 2, 7, 9, 8, 4, 5, 3, 0, 2, 2, 3, 8, 5, 7, 7, 9, 1, 0, 4, 1, 1, 6, 4, 1, 9, 2, 5, 7, 9, 7, 3, 6, 8, 9, 1, 4, 9, 5, 4, 6, 1, 2, 6, 9, 6, 2, 7, 5, 3, 3
Offset: 1

Views

Author

Keywords

Examples

			1.1546796279605837888382808629570944052320556413000593142798453022385779...
		

Crossrefs

Programs

  • Magma
    nMax:=160; nExactMax:=20; DP:=100; R:=RealField(DP); SetDefaultRealField(R); logA:=[Log(5.0)]; for n in [2..nMax] do logAprev:=logA[n-1]; if n le nExactMax then Aprev:=Exp(logAprev); logA[n]:=logAprev + Log(Aprev-1) + Log(Aprev-2) - Log(6); else logA[n]:=3*logAprev - Log(6); end if; t:=Exp((1/3^n)*logA[n]); n, ChangePrecision(t,72); end for; // Jon E. Schoenfield, Dec 09 2014
  • Mathematica
    exact = 20; terms = 200; b = ConstantArray[0, terms]; b[[1]] = N[Log[5], 100]; Do[b[[n]] = b[[n - 1]] + If[n > exact, b[[n - 1]], Log[Exp[b[[n - 1]]] - 1]] + If[n > exact, b[[n - 1]], Log[Exp[b[[n - 1]]] - 2]] - Log[6], {n, 2, terms}]; Do[Print[Exp[b[[n]]/3^n]], {n, 1, Length[b]}] (* after Jon E. Schoenfield *)

Formula

Equals lim_{n->infinity} A251702(n)^(1/3^n).
Showing 1-4 of 4 results.