cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A141498 a(n) = A010696(n-1) * A086892(n).

Original entry on oeis.org

2, 6, 2, 30, 2, 42, 2, 30, 2, 66, 46, 2730, 2, 6, 2, 510, 2, 798, 2, 1650, 2, 138, 94, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 46, 6, 142, 140100870, 2, 6, 2, 67650, 2, 12642, 862, 690, 2, 282, 2, 4501770, 2, 66, 2, 1590, 2, 798, 46, 870, 2, 354, 2, 283933650, 2, 6, 2, 510, 2
Offset: 1

Views

Author

Paul Curtz, Aug 10 2008

Keywords

Crossrefs

Programs

Extensions

Offset modified, extended by R. J. Mathar, Sep 03 2009

A141460 A086892(11*n).

Original entry on oeis.org

23, 23, 23, 115, 23, 10787, 23, 10235, 23, 2783, 23, 701155, 23, 23, 23, 173995, 23, 40785647, 23, 69575, 23, 16721, 24863, 62402795, 23, 23, 23, 3335, 23, 13392934247, 23, 61420235, 23, 23, 1633, 2842731249875335, 23, 9637, 23, 253879175
Offset: 1

Views

Author

Paul Curtz, Aug 08 2008

Keywords

Comments

Terms are multiples of 23.

Programs

  • Maple
    A086892 := proc(n) gcd(2^n-1,3^n-1) ; end: for n from 1 to 40 do printf("%d,",A086892(11*n)) ; od: # R. J. Mathar, Aug 12 2008

Extensions

Edited and extended by R. J. Mathar, Aug 12 2008

A260119 a(n) is the least positive integer k such that 2^n-1 and k^n-1 are relatively prime.

Original entry on oeis.org

1, 3, 3, 15, 3, 21, 3, 45, 3, 99, 5, 1365, 3, 3, 3, 765, 3, 399, 3, 1815, 3, 69, 5, 1365, 3, 3, 3, 435, 3, 35805, 3, 765, 5, 3, 7, 2878785, 3, 3, 3, 20295, 3, 903, 5, 1035, 3, 141, 3, 116025, 3, 99, 3, 795, 3, 399, 5, 435, 3, 177, 3, 85180095, 3, 3, 3, 765, 3, 32361, 3, 45, 5, 11715, 3
Offset: 1

Views

Author

Tom Edgar, Jul 17 2015

Keywords

Comments

Note that (2^n-1)^n-1 is always relatively prime to 2^n-1.
a(72) > 10^8.
According to the conjecture given in A086892, a(n) = 3 infinitely often.
From David A. Corneth, Aug 17 2015: (Start)
Conjecture 1: a(n) is never divisible by 2.
Conjecture 2: a(n) is of the form q * m where q is the product of all odd primes that are one more than a divisor of n.
(End)
From Robert Israel, Sep 02 2015: (Start)
Both conjectures are true.
Since (2k)^n - 1 = (k^n)*(2^n - 1) + (k^n - 1), GCD((2k)^n - 1, 2^n-1) = GCD(k^n-1, 2^n-1). Thus a(n) is always odd.
If p is an odd prime such that p-1 divides n, then k^n - 1 is divisible by p for all k coprime to p (and in particular k=2). Thus a(n) must be divisible by p, and thus by the product of all such p.
(End)

Examples

			Since 2^5-1 = 31 and 3^5-1 = 242 are relatively prime, a(5) = 3.
The divisors of 72 are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72;
Adding one to each divisor gives 3, 4, 5, 7, 9, 10, 13, 19, 25, 37, 73;
The odd primes in this list are 3, 5, 7, 13, 19, 37, 73;
The product of these primes is 3 * 5 * 7 * 13 * 19 * 37 * 73 = 70050435;
Thus a(72) is of the form 70050435 * m.
		

Crossrefs

Cf. A086892.

Programs

  • Maple
    f:= proc(n) local P, Q, M, k, kn;
    P:= select(isprime, map(t -> t+1, numtheory:-divisors(n)) minus {2});
    M:= convert(P,`*`);
    Q:= 2^n - 1;
    for k from M by 2*M do
      kn:= k &^ n - 1 mod Q;
      if igcd(kn, Q) = 1 then
        return k
      fi
    od
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 02 2015
  • Mathematica
    Table[k = 1; While[! CoprimeQ[2^n - 1, k^n - 1], k++]; k, {n, 59}] (* Michael De Vlieger, Sep 01 2015 *)
  • PARI
    a(n) = {my(k=1, pt = 2^n-1); while (gcd(pt, k^n-1) != 1, k++); k;} \\ Michel Marcus, Jul 17 2015 && Jan 27 2016
    
  • PARI
    conjecture_a(n) = {my(d=divisors(n)); v=select(x->isprime(x+1),select(y->y%2==0,d)); v+= vector(#v,i,1); p=prod(i=1,#v,v[i]); if(p==1&&n!=1,p=3);
    forstep(i=1, p, 2,if(gcd((p * i)^n-1, 2^n-1)==1, return(p*i))); for(i=1,n,if(gcd(p^n-1,2^n-1) == 1, return(p), p=nextprime(p+1))); forstep(i=1,100000,2,if(gcd((i)^n-1,2^n-1)==1,return(i)))} \\ David A. Corneth, Sep 01 2015
  • Sage
    def min_k(n):
        g,k=2,0
        while g!=1:
            k=k+1
            g=gcd(2^n-1,k^n-1)
        return k
    print([min_k(n) for n in [1..71]])
    

A270390 Greatest common divisor of 2^n-1 and 5^n-1.

Original entry on oeis.org

1, 3, 1, 3, 1, 63, 1, 3, 1, 33, 1, 819, 1, 3, 31, 51, 1, 3591, 1, 1353, 1, 69, 1, 819, 1, 3, 1, 87, 1, 21483, 1, 51, 1, 3, 71, 1727271, 1, 3, 79, 1353, 1, 2408301, 1, 6141, 31, 141, 1, 13923, 1, 8283, 1, 159, 1, 10773, 1, 87, 1, 177, 1, 698476779, 1, 3, 1, 32691, 1
Offset: 1

Views

Author

Tom Edgar, Mar 16 2016

Keywords

Comments

Ailon and Rudnick conjecture that a(n) = 1 infinitely often.

Examples

			For n=3, 2^3-1 = 7 and 5^3-1 = 124, thus a(3) = gcd(7,124) = 1.
		

Crossrefs

Programs

  • Maple
    seq(igcd(2^n-1, 5^n-1), n=1..100);
  • Mathematica
    Table[GCD[2^n - 1, 5^n - 1], {n, 100}]
  • PARI
    vector(100,n,gcd(2^n-1,5^n-1))
  • Sage
    [gcd(2^n-1,5^n-1) for n in [1..100]]
    

Formula

a(n) = gcd(2^n - 1, 5^n - 1).
a(n) = gcd(A000225(n), A024049(n)).

A141517 A141498(n)/A027760(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 47, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 71, 73, 1, 1, 1, 5, 1, 7, 431, 1, 1, 1, 1, 97, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 47, 1, 1, 1, 1, 1, 601, 1, 23, 1, 1, 5, 1, 1, 167, 7, 1, 431, 1, 1, 1, 1, 1, 1, 1, 1, 191, 193, 1
Offset: 1

Views

Author

Paul Curtz, Aug 11 2008

Keywords

Comments

Composite entries are a(100)=25, a(120)=1205, a(144)=55969, a(156)=4069 etc.

Programs

Extensions

Offset modified, extended by R. J. Mathar, Sep 03 2009

A268081 Least positive integer k such that 3^n-1 and k^n-1 are relatively prime.

Original entry on oeis.org

2, 2, 2, 10, 2, 28, 2, 10, 2, 22, 10, 910, 2, 2, 2, 170, 2, 3458, 2, 110, 2, 46, 10, 910, 2, 2, 2, 290, 2, 9548, 2, 340, 10, 2, 22, 639730, 2, 2, 2, 4510, 2, 1204, 10, 230, 2, 94, 2, 216580, 2, 22, 2, 530, 2, 3458, 22, 580, 2, 118, 2, 18928910
Offset: 1

Views

Author

Tom Edgar, Jan 25 2016

Keywords

Comments

Note that (3^n-1)^n-1 is always relatively prime to 3^n-1.
According to the conjecture given in A086892, a(n) = 2 infinitely often.
When n>1, a(n) = 2 if and only if A260119(n) = 3.
From Robert Israel, Nov 20 2024: (Start)
a(n) <= a(m*n) for m >= 1.
If p is a prime factor of 3^n - 1 such that p-1 divides n, then a(n) is a multiple of p. (End)

Examples

			Since 3^5-1 = 242 and 2^5-1 = 31 are relatively prime, a(5) = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,F,m,k,v;
           t:= 3^n-1;
           F:= select(isprime,map(`+`,numtheory:-divisors(n),1));
           m:= convert(select(s -> t mod s = 0, F),`*`);
           for k from m by m do
                 v:= k &^ n - 1 mod t;
                 if igcd(v, t) = 1 then return k fi
           od
        end proc:
    map(f, [$1..100]); # Robert Israel, Nov 20 2024
  • Mathematica
    Table[k = 1; While[! CoprimeQ[3^n - 1, k^n - 1], k++]; k, {n, 59}] (* Michael De Vlieger, Jan 27 2016 *)
  • PARI
    a(n) = {k=1; while( gcd(3^n-1, k^n-1)!=1, k++); k; }
  • Sage
    def min_k(n):
        g, k=2, 0
        while g!=1:
            k=k+1
            g=gcd(3^n-1, k^n-1)
        return k
    print([min_k(n) for n in [1..60]])
    
Showing 1-6 of 6 results.