A086892 Greatest common divisor of 2^n-1 and 3^n-1.
1, 1, 1, 5, 1, 7, 1, 5, 1, 11, 23, 455, 1, 1, 1, 85, 1, 133, 1, 275, 1, 23, 47, 455, 1, 1, 1, 145, 1, 2387, 1, 85, 23, 1, 71, 23350145, 1, 1, 1, 11275, 1, 2107, 431, 115, 1, 47, 1, 750295, 1, 11, 1, 265, 1, 133, 23, 145, 1, 59, 1, 47322275, 1, 1, 1, 85, 1, 10787, 1, 5, 47, 781, 1
Offset: 1
References
- Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of a^n-1 and b^n-1. Math. Z. 243 (2003), no. 1, 79-84
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- N. Ailon, Z. Rudnick, Torsion points on curves and common divisors of a^k-1 and b^k-1, Acta Arith. 113 (2004), no. 1, 31-38.
- Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of a^n-1 and b^n-1, Math. Z. 243 (2003), no. 1, 79-84
- P. Corvaja, Greatest Common Divisors in Vojta's Conjecture: Arithmetic and Geometry, Journées Arithmétiques 2011.
- Index to divisibility sequences
Programs
-
Haskell
a086892 n = a086892_list !! (n-1) a086892_list = tail $ zipWith gcd a000225_list a003462_list -- Reinhard Zumkeller, Jul 18 2015
-
Magma
[Gcd(2^n-1, 3^n-1): n in [1..75]]; // Vincenzo Librandi, Sep 02 2015
-
Maple
seq(igcd(2^n-1,3^n-1), n=1..100); # Robert Israel, Sep 02 2015
-
Mathematica
Table[GCD[2^n - 1, 3^n - 1], {n, 100}] (* Vincenzo Librandi, Sep 02 2015 *)
-
PARI
vector(100,n,gcd(2^n-1,3^n-1))
Formula
a(n) = gcd(2^n - 1, 3^n - 1).
Extensions
Replaced arXiv URL with non-cached version by R. J. Mathar, Oct 23 2009
Comments