cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A086892 Greatest common divisor of 2^n-1 and 3^n-1.

Original entry on oeis.org

1, 1, 1, 5, 1, 7, 1, 5, 1, 11, 23, 455, 1, 1, 1, 85, 1, 133, 1, 275, 1, 23, 47, 455, 1, 1, 1, 145, 1, 2387, 1, 85, 23, 1, 71, 23350145, 1, 1, 1, 11275, 1, 2107, 431, 115, 1, 47, 1, 750295, 1, 11, 1, 265, 1, 133, 23, 145, 1, 59, 1, 47322275, 1, 1, 1, 85, 1, 10787, 1, 5, 47, 781, 1
Offset: 1

Views

Author

Joseph H. Silverman (jhs(AT)math.brown.edu), Sep 18 2003

Keywords

Comments

a(n) is a simple (the simplest?) example of a divisibility sequence associated to a rational point on an algebraic group of dimension larger than two. Specifically, it is the divisibility sequence associated to the point (2,3) on the two-dimensional torus G_m^2. Ailon and Rudnick conjecture that a(n) = 1 for infinitely many n.
According to Corvaja, a(n) < 2^n - 1 for all but finitely many n.

References

  • Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of a^n-1 and b^n-1. Math. Z. 243 (2003), no. 1, 79-84

Crossrefs

Programs

  • Haskell
    a086892 n = a086892_list !! (n-1)
    a086892_list = tail $ zipWith gcd a000225_list a003462_list
    -- Reinhard Zumkeller, Jul 18 2015
    
  • Magma
    [Gcd(2^n-1, 3^n-1): n in [1..75]]; // Vincenzo Librandi, Sep 02 2015
  • Maple
    seq(igcd(2^n-1,3^n-1), n=1..100); # Robert Israel, Sep 02 2015
  • Mathematica
    Table[GCD[2^n - 1, 3^n - 1], {n, 100}] (* Vincenzo Librandi, Sep 02 2015 *)
  • PARI
    vector(100,n,gcd(2^n-1,3^n-1))
    

Formula

a(n) = gcd(2^n - 1, 3^n - 1).
a(n) = GCD(A000255(n), A003462(n)) = GCD(A000255(n), A024023(n)). - Reinhard Zumkeller, Mar 26 2004

Extensions

Replaced arXiv URL with non-cached version by R. J. Mathar, Oct 23 2009

A268081 Least positive integer k such that 3^n-1 and k^n-1 are relatively prime.

Original entry on oeis.org

2, 2, 2, 10, 2, 28, 2, 10, 2, 22, 10, 910, 2, 2, 2, 170, 2, 3458, 2, 110, 2, 46, 10, 910, 2, 2, 2, 290, 2, 9548, 2, 340, 10, 2, 22, 639730, 2, 2, 2, 4510, 2, 1204, 10, 230, 2, 94, 2, 216580, 2, 22, 2, 530, 2, 3458, 22, 580, 2, 118, 2, 18928910
Offset: 1

Views

Author

Tom Edgar, Jan 25 2016

Keywords

Comments

Note that (3^n-1)^n-1 is always relatively prime to 3^n-1.
According to the conjecture given in A086892, a(n) = 2 infinitely often.
When n>1, a(n) = 2 if and only if A260119(n) = 3.
From Robert Israel, Nov 20 2024: (Start)
a(n) <= a(m*n) for m >= 1.
If p is a prime factor of 3^n - 1 such that p-1 divides n, then a(n) is a multiple of p. (End)

Examples

			Since 3^5-1 = 242 and 2^5-1 = 31 are relatively prime, a(5) = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,F,m,k,v;
           t:= 3^n-1;
           F:= select(isprime,map(`+`,numtheory:-divisors(n),1));
           m:= convert(select(s -> t mod s = 0, F),`*`);
           for k from m by m do
                 v:= k &^ n - 1 mod t;
                 if igcd(v, t) = 1 then return k fi
           od
        end proc:
    map(f, [$1..100]); # Robert Israel, Nov 20 2024
  • Mathematica
    Table[k = 1; While[! CoprimeQ[3^n - 1, k^n - 1], k++]; k, {n, 59}] (* Michael De Vlieger, Jan 27 2016 *)
  • PARI
    a(n) = {k=1; while( gcd(3^n-1, k^n-1)!=1, k++); k; }
  • Sage
    def min_k(n):
        g, k=2, 0
        while g!=1:
            k=k+1
            g=gcd(3^n-1, k^n-1)
        return k
    print([min_k(n) for n in [1..60]])
    

A270360 Least positive integer k such that 5^n-1 and k^n-1 are relatively prime.

Original entry on oeis.org

2, 6, 2, 6, 2, 42, 2, 6, 2, 132, 2, 546, 2, 12, 6, 102, 2, 798, 2, 198, 2, 138, 2, 546, 2, 6, 2, 348, 2, 85932, 2, 102, 2, 12, 22, 383838, 2, 12, 6, 2706, 2, 1806, 2, 414, 22, 282, 2, 9282, 2, 264, 2, 318, 2, 1596, 2, 348, 2, 354, 2, 34072038
Offset: 1

Views

Author

Tom Edgar, Mar 16 2016

Keywords

Comments

Note that (5^n-1)^n-1 is always relatively prime to 5^n-1.
Based on conjecture given in A270390, a(n) = 2 infinitely often.
Are all terms even? - Harvey P. Dale, Jul 29 2024

Examples

			Since 5^2-1 = 24 and 6^2-1 = 35 are relatively prime while 2^2-1, 3^2-1, 4^2-1, and 5^2-1 are not relatively prime to 24, a(5) = 3.
		

Crossrefs

Programs

  • Mathematica
    lpi[n_]:=Module[{k=1,c=5^n-1},While[!CoprimeQ[c,k^n-1],k++];k]; Array[lpi,60] (* Harvey P. Dale, Jul 29 2024 *)
  • PARI
    a(n) = {k=1; while( gcd(5^n-1, k^n-1)!=1, k++); k; }
  • Sage
    def min_k(n):
        g, k=2, 0
        while g!=1:
            k=k+1
            g=gcd(5^n-1, k^n-1)
        return k
    print([min_k(n) for n in [1..60]])
    

Extensions

a(60) from Harvey P. Dale, Jul 29 2024
Showing 1-3 of 3 results.