cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086953 Binomial transform of (-1)^mod(n,3) (A257075).

Original entry on oeis.org

1, 0, 0, 2, 6, 12, 22, 42, 84, 170, 342, 684, 1366, 2730, 5460, 10922, 21846, 43692, 87382, 174762, 349524, 699050, 1398102, 2796204, 5592406, 11184810, 22369620, 44739242, 89478486, 178956972, 357913942, 715827882, 1431655764, 2863311530, 5726623062
Offset: 0

Views

Author

Paul Barry, Jul 25 2003

Keywords

Crossrefs

Programs

Formula

a(n+3)/2 = A024495(n+2). - corrected by Vladimir Shevelev, Aug 08 2017
a(n) = 0^n + Sum{k=0..floor((n-1)/3)} C(n-1, 3*k+2).
a(n) = Sum{k=0..n} C(n, k)(-1)^mod(k, 3).
G.f.: (1 - 3*x + 3*x^2)/((1 - 2*x)*(1 - x + x^2)). - Paul Barry, Dec 14 2004
From Vladimir Shevelev, Aug 02 2017: (Start)
a(n) = A024493(n) - A131708(n) + A024495(n);
a(n) = A024495(n) if and only if n == 1 (mod 3);
a(n) = A024495(n) - 1 if and only if n == 2 or 3 (mod 6);
a(n) = A024495(n) + 1 if and only if n == 0 or 5 (mod 6);
a(3*k+1) = 2*A024495(3*k). (End)
a(n) = A131370(n+1)/2. - Rick L. Shepherd, Aug 02 2017
3*a(n) = 2^n + 2*A057079(n+2). - R. J. Mathar, Aug 04 2017