cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A257075 a(n) = (-1)^(n mod 3).

Original entry on oeis.org

1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1
Offset: 0

Views

Author

Michael Somos, Apr 15 2015

Keywords

Comments

Period 3: repeat [1, -1, 1]. - Wesley Ivan Hurt, Jul 02 2016

Examples

			G.f. = 1 - x + x^2 + x^3 - x^4 + x^5 + x^6 - x^7 + x^8 + x^9 - x^10 + ...
G.f. = q - q^3 + q^5 + q^7 - q^9 + q^11 + q^13 - q^15 + q^17 + q^19 + ...
		

Crossrefs

Essentially the same as A131561.

Programs

  • Magma
    [(-1)^(n mod 3) : n in [0..100]]; // Wesley Ivan Hurt, Jul 02 2016
  • Maple
    A257075:=n->(-1)^(n mod 3): seq(A257075(n), n=0..100); # Wesley Ivan Hurt, Jul 02 2016
  • Mathematica
    a[ n_] := (-1)^Mod[n, 3]; Table[a[n], {n, 0, 100}]
    LinearRecurrence[{0,0,1},{1,-1,1},80] (* or *) PadRight[{},100,{1,-1,1}] (* Harvey P. Dale, May 25 2023 *)
  • PARI
    {a(n) = (-1)^(n%3)};
    
  • PARI
    {a(n) = 1 - 2 * (n%3 == 1)};
    
  • PARI
    {a(n) = [1, -1, 1][n%3 + 1]};
    
  • PARI
    {a(n) = my(A, p, e); n = abs(2*n + 1); A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==3, -1, 1))};
    

Formula

Euler transform of length 6 sequence [-1, 1, 2, 0, 0, -1].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = -1 if e>0, otherwise b(p^e) = 1.
a(n) = a(-1-n) = a(n+3) = -a(n-1)*a(n-2) for all n in Z.
G.f.: (1 - x + x^2) / (1 - x^3).
G.f.: (1 - x) * (1 - x^6) / ((1 - x^2) * (1 - x^3)^2).
G.f.: 1 / (1 + x / (1 + 2*x^2 / (1 - x / (1 - x / (1 + x))))).
Given g.f. A(x), then x*A(x^2) = Sum_{k>0} (x^k - x^(2*k)) - 2*(x^(3*k) - x^(6*k)).
a(n) = A131561(n+1) for all n in Z.
a(n) = (-1)^n * A130151(n) for all n in Z.
Convolution inverse is A257076.
PSUM transform is A008611.
BINOMIAL transform is A086953.
1 / (1 - a(0)*x / (1 - a(1)*x / (1 - a(2)*x / ...))) is the g.f. of A168505.
From Wesley Ivan Hurt, Jul 02 2016: (Start)
a(n) = (1 + 2*cos(2*n*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3))/3.
a(n) = 2*sgn((n+2) mod 3) - 1. (End)
E.g.f.: (exp(3*x/2) + 4*sin(Pi/6-sqrt(3)*x/2))*exp(-x/2)/3. - Ilya Gutkovskiy, Jul 02 2016

A131370 a(n) = 3a(n-1) - 3a(n-2) + 2a(n-3), a(0) = 3, a(1) = 2, a(2) = 0.

Original entry on oeis.org

3, 2, 0, 0, 4, 12, 24, 44, 84, 168, 340, 684, 1368, 2732, 5460, 10920, 21844, 43692, 87384, 174764, 349524, 699048, 1398100, 2796204, 5592408, 11184812, 22369620, 44739240, 89478484, 178956972, 357913944, 715827884, 1431655764, 2863311528
Offset: 0

Views

Author

Paul Curtz, Sep 30 2007

Keywords

Comments

Sequence is identical to its third differences. Binomial transform of 3, -1, -1, 3, -1, -1, 3, -1, -1, ... .

Crossrefs

Cf. A086953.

Programs

  • Maple
    seq((1/3)*2^n+8*cos((1/3)*n*Pi)*1/3,n=0..33); # Emeric Deutsch, Oct 15 2007
  • Mathematica
    a = {3, 2, 0}; Do[AppendTo[a, 3*a[[ -1]] - 3*a[[ -2]] + 2*a[[ -3]]], {60}]; a (* Stefan Steinerberger, Oct 04 2007 *)
    LinearRecurrence[{3,-3,2},{3,2,0},40] (* Harvey P. Dale, Apr 28 2025 *)

Formula

a(n) = 2^n/3 + (8/3)cos(n*Pi/3). - Emeric Deutsch, Oct 15 2007
G.f.: -(3-7*x+3*x^2)/(2*x-1)/(x^2-x+1). - R. J. Mathar, Nov 14 2007
a(n) = 2*A086953(n-1) for n>0. - Rick L. Shepherd, Aug 02 2017

Extensions

More terms from Stefan Steinerberger, Oct 04 2007
Showing 1-2 of 2 results.