cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001100 Triangle read by rows: T(n,k) = number of permutations of length n with exactly k rising or falling successions, for n >= 1, 0 <= k <= n-1.

Original entry on oeis.org

1, 0, 2, 0, 4, 2, 2, 10, 10, 2, 14, 40, 48, 16, 2, 90, 230, 256, 120, 22, 2, 646, 1580, 1670, 888, 226, 28, 2, 5242, 12434, 12846, 7198, 2198, 366, 34, 2, 47622, 110320, 112820, 64968, 22120, 4448, 540, 40, 2, 479306, 1090270, 1108612, 650644, 236968, 54304, 7900, 748, 46, 2
Offset: 1

Views

Author

N. J. A. Sloane, Aug 19 2003

Keywords

Comments

Number of permutations of 12...n such that exactly k of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

Examples

			Triangle T(n,k) begins (n >= 1, k = 0..n-1):
    1;
    0,    2;
    0,    4,    2;
    2,   10,   10,   2;
   14,   40,   48,  16,   2;
   90,  230,  256, 120,  22,  2;
  646, 1580, 1670, 888, 226, 28, 2;
  ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • J. Riordan, A recurrence for permutations without rising or falling successions. Ann. Math. Statist. 36 (1965), 708-710.
  • David Sankoff and Lani Haque, Power Boosts for Cluster Tests, in Comparative Genomics, Lecture Notes in Computer Science, Volume 3678/2005, Springer-Verlag.

Crossrefs

Triangle in A086856 multiplied by 2. Cf. A010028.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    T:= (n, k)-> coeff(S(n), t, k):
    seq(seq(T(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    s[n_] := s[n] = If[n < 4, {1, 1, 2*t, 4*t + 2*t^2}[[n + 1]], Expand[(n + 1 - t)*s[n - 1] - (1 - t)*(n - 2 + 3*t)*s[n - 2] - (1 - t)^2*(n - 5 + t)*s[n - 3] + (1 - t)^3*(n - 3)* s[n - 4]]]; t[n_, k_] := Ceiling[Coefficient[s[n], t, k]]; Flatten[ Table[ Table[t[n, k], {k, 0, n - 1}], {n, 1, 10}]] (* Jean-François Alcover, Jan 25 2013, translated from Alois P. Heinz's Maple program *)

Formula

Let T{n, k} = number of permutations of 12...n with exactly k rising or falling successions. Let S[n](t) = Sum_{k >= 0} T{n, k}*t^k. Then S[0] = 1; S[1] = 1; S[2] = 2*t; S[3] = 4*t+2*t^2; for n >= 4, S[n] = (n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4].
T(n, 0) = n! + Sum_{i=1..m-1} (-1)^i*(n-i)!*Sum_{j=1..i} 2^j*binomial(i-1, j-1)*binomial(n-i, j), and T(n, k) = Sum_{i=1..m-1} (-1)^(i-k)*binomial(i, k)*(n-i)!*Sum_{j=1..i} 2^j*binomial(i-1, j-1)*binomial(n-i, j), for k >= 1, and n >= 1. See the D. P.Robbins link for A(n, k) = T(n, k), and his comment concerning the case k = i = 0 . - Wolfdieter Lang, May 17 2025

A086970 Fix 1, then exchange the subsequent odd numbers in pairs.

Original entry on oeis.org

1, 5, 3, 9, 7, 13, 11, 17, 15, 21, 19, 25, 23, 29, 27, 33, 31, 37, 35, 41, 39, 45, 43, 49, 47, 53, 51, 57, 55, 61, 59, 65, 63, 69, 67, 73, 71, 77, 75, 81, 79, 85, 83, 89, 87, 93, 91, 97, 95, 101, 99, 105, 103, 109, 107, 113, 111, 117, 115, 121, 119
Offset: 0

Views

Author

Paul Barry, Jul 26 2003

Keywords

Comments

Partial sums are A086955.

Crossrefs

Programs

  • Magma
    [1] cat [2*n+1-2*(-1)^n: n in [1..70]]; // Vincenzo Librandi, Jun 21 2017
    
  • Mathematica
    Join[{1}, LinearRecurrence[{1, 1, -1}, {5, 3, 9}, 60]] (* Vincenzo Librandi, Jun 21 2017 *)
  • PARI
    Vec((1+4*x-3*x^2+2*x^3)/((1+x)*(1-x)^2) + O(x^100)) \\ Michel Marcus, Jun 21 2017

Formula

G.f.: (1+4*x-3*x^2+2*x^3)/((1+x)*(1-x)^2).
a(n) = n + abs(2 - (n + 1)*(-1)^n). - Lechoslaw Ratajczak, Dec 09 2016
a(n) = 2*A065190(n+1)-1 and a(n) = 2*A014681(n)+1. - Michel Marcus, Dec 10 2016
From Guenther Schrack, Jun 09 2017: (Start)
a(n) = 2*n + 1 - 2*(-1)^n for n > 0.
a(n) = 2*n + 1 - 2*cos(n*Pi) for n > 0.
a(n) = 4*n - a(n-1) for n > 1.
Linear recurrence: a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
First differences: 2 - 4*(-1)^n for n > 1; -(-1)^n*A010696(n) for n > 1.
a(n) = A065164(n+1) + n for n > 0.
a(A014681(n)) = A005408(n) for n >= 0.
a(A005408(A014681(n)) for n >= 0.
a(n) = A005408(A103889(n)) for n >= 0.
A103889(a(n)) = 2*A065190(n+1) for n >= 0.
a(2*n-1) = A004766(n) for n > 0.
a(2*n+2) = A004767(n) for n >= 0. (End)
Showing 1-2 of 2 results.