cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087035 Maximum value taken on by f(P) = Sum_{i=1..n} p(i)*p(n+1-i) as {p(1),p(2),...,p(n)} ranges over all permutations P of {1,2,3,...,n}.

Original entry on oeis.org

0, 1, 4, 13, 28, 53, 88, 137, 200, 281, 380, 501, 644, 813, 1008, 1233, 1488, 1777, 2100, 2461, 2860, 3301, 3784, 4313, 4888, 5513, 6188, 6917, 7700, 8541, 9440, 10401, 11424, 12513, 13668, 14893, 16188, 17557, 19000, 20521, 22120, 23801, 25564, 27413, 29348
Offset: 0

Views

Author

John W. Layman, Jul 31 2003

Keywords

Comments

The corresponding minimum value of f(P) is given by A000292(n)=binomial(n+3,3).
The number of distinct values of f(P) is given by A087034.
Also, number of (w,x,y) with all terms in {0,...,n-1} and 2|w-x| <= max(w,x,y)-min(w,x,y). For a guide to related sequences, see A212959. - Clark Kimberling, Jun 10 2012

Examples

			a(3)=13, since f takes on the values 10 and 13: f({1,2,3})=10, f({1,3,2})=13, f({2,1,3})=13, f({2,3,1})=13, f({3,1,2})=13 and f({3,2,1})=10.
		

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Max[w, x, y] - Min[w, x, y] >= 2 Abs[w - x],
      s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 45]]

Formula

From Clark Kimberling, Jun 10 2012: (Start)
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).
G.f.: (x + x^2 + 3*x^3 - x^4)/(((1 - x)^4)*(1 + x)).
a(n+1) + A213045(n) = (n+1)^3. (End)
a(n) = (2*(n-1)*(n+1)*(2*n+3)-3*(-1)^n+9)/12. - Bruno Berselli, Jun 11 2012

Extensions

a(11) and a(12) from R. J. Mathar, Jun 26 2012
Merged with a sequence of Clark Kimberling by Max Alekseyev, Jun 27 2012
a(0)=0 prepended by Alois P. Heinz, Aug 24 2024