A212959
Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.
Original entry on oeis.org
1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0
a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
- A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
- P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 50]] (* A212959 *)
-
a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015
A110610
Maximal value of sum(p(i)p(i+1),i=1..n), where p(n+1)=p(1), as p ranges over all permutations of {1,2,...,n}.
Original entry on oeis.org
1, 4, 11, 25, 48, 82, 129, 191, 270, 368, 487, 629, 796, 990, 1213, 1467, 1754, 2076, 2435, 2833, 3272, 3754, 4281, 4855, 5478, 6152, 6879, 7661, 8500, 9398, 10357, 11379, 12466, 13620, 14843, 16137, 17504, 18946, 20465, 22063, 23742, 25504
Offset: 1
a(4)=25 because the values of the sum for the permutations of {1,2,3,4} are 21 (8 times), 24 (8 times) and 25 (8 times).
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Leonard F. Klosinski, Gerald L. Alexanderson and Loren C. Larson, The Fifty-Seventh William Lowell Putnam Competition, Amer. Math. Monthly, 104, 1997, 744-754, Problem B-3.
- Vasile Mihai and Michael Woltermann, Problem 10725: The Smoothest and Roughest Permutations, Amer. Math. Monthly, 108 (March 2001), pp. 272-273.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a:=proc(n) if n=1 then 1 else (2*n^3+3*n^2-11*n+18)/6 fi end: seq(a(n),n=1..50);
-
Rest@ CoefficientList[Series[x (1 + x) (1 - x + 2 x^2 - x^3)/(1 - x)^4, {x, 0, 42}], x] (* Michael De Vlieger, Jan 29 2022 *)
A213045
Number of (w,x,y) with all terms in {0,...,n} and 2*|w-x| > max(w,x,y) - min(w,x,y).
Original entry on oeis.org
0, 4, 14, 36, 72, 128, 206, 312, 448, 620, 830, 1084, 1384, 1736, 2142, 2608, 3136, 3732, 4398, 5140, 5960, 6864, 7854, 8936, 10112, 11388, 12766, 14252, 15848, 17560, 19390, 21344, 23424, 25636, 27982, 30468, 33096, 35872, 38798, 41880
Offset: 0
See
A212959 for a guide to related sequences.
-
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Max[w, x, y] - Min[w, x, y] < 2 Abs[w - x], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 45]] (* this sequence *)
m/2 (* integers *)
LinearRecurrence[{3,-2,-2,3,-1},{0,4,14,36,72},50] (* Harvey P. Dale, Jul 31 2013 *)
A087034
Number of distinct values taken on by f(P) = Sum_{i=1..n} p(i)*p(n+1-i) as {p(1),p(2),...,p(n)} ranges over all permutations P of {1,2,3,...n}.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 9, 34, 35, 103, 77, 207, 138, 351, 222, 546, 334, 801, 478, 1124, 658, 1523, 878, 2006, 1142, 2581, 1454, 3256, 1818
Offset: 0
a(3)=2, since f takes on exactly two distinct values 10 and 13: f({1,2,3})=10, f({1,3,2})=13, f({2,1,3})=13, f({2,3,1})=13, f({3,1,2})=13 and f({3,2,1})=10.
Showing 1-4 of 4 results.
Comments