A087047 a(n) = n*(n+1)*(n+2)*a(n-1)/6 for n >= 1; a(0) = 1.
1, 1, 4, 40, 800, 28000, 1568000, 131712000, 15805440000, 2607897600000, 573737472000000, 164088916992000000, 59728365785088000000, 27176406432215040000000, 15218787602040422400000000, 10348775569387487232000000000, 8444600864620189581312000000000, 8182818237816963704291328000000000
Offset: 0
Examples
a(4) = (1/32)*(1/81)*24*120*720 = 800.
Links
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
- Djamel Himane, A simple proof of Werner Schulte's conjecture, arXiv:2404.08646 [math.GM], 2024
- Ana Luzón, Manuel A. Morón, and José L. Ramírez, Differential Equations in Ward's Calculus, ResearchGate, September 2023.
- Eric Weisstein's World of Mathematics, Tetrahedral Number.
Programs
-
Maple
a[0]:=1: for n from 1 to 20 do a[n]:=n*(n+1)*(n+2)*a[n-1]/6 od: seq(a[n],n=0..17); # Emeric Deutsch, Mar 06 2005 seq(mul(binomial(k+2, 3), k=1..n), n=0..16); # Zerinvary Lajos, Aug 07 2007
-
Mathematica
Table[Product[k*(k+1)*(k+2)/6,{k,1,n}],{n,0,16}] (* Alexander Adamchuk, May 19 2006 *) a[n_]:=Denominator[SeriesCoefficient[HypergeometricPFQ[{1},{1,2,3},6x],{x,0,n}]]; Array[a,18,0] (* Stefano Spezia, Oct 13 2023 *)
-
Sage
q=50 # change q for more terms [2^(-n-1)*3^(-n)*factorial(n)*factorial(n+1)*factorial(n+2) for n in [0..q]] # Tom Edgar, Mar 15 2014
Formula
a(n) = 2^(-n-1)*3^(-n)*n!*(n+1)!*(n+2)!.
From Alexander Adamchuk, May 19 2006: (Start)
a(n) = Product_{k=1..n} k*(k+1)*(k+2)/6.
a(n) = Product_{k=1..n} A000292(k). (End)
a(n) = denominator( [x^n] 1F3([1], [1, 2, 3], 6*x) ), where 1F3 is the hypergeometric function (see Luzón et al. at page 19). - Stefano Spezia, Oct 13 2023
Extensions
More terms from Emeric Deutsch, Mar 06 2005
Example and formula corrected by Tom Edgar, Mar 15 2014
a(0)=1 prepended by and a(15)-a(17) from Stefano Spezia, Oct 13 2023
Comments