cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087057 Smallest number whose square is larger than 2*n^2.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 57, 58, 60, 61, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 92, 94, 95, 97, 98, 99, 101
Offset: 1

Views

Author

Jens Voß, Aug 07 2003

Keywords

Comments

Integer solutions to the equation x=ceiling(r*floor(x/r)) where r=sqrt(2). - Benoit Cloitre, Feb 14 2004

Examples

			a(10) = 15 because the 15^2 = 225 is the smallest square number greater than 2*10^2 = 200.
Can be built by recursive removals:
start with 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...
get a(1) := 2 and remove the 2nd term (= 4):
[2] _ 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
get a(2) := 3 and remove the 3rd term (= 7):
[2, 3] _ 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, ...
get a(3) := 5 and remove the 5th term (= 11):
[2, 3, 5] _ 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, ...
get a(4) := 6 and remove the 6th term (= 14):
[2, 3, 5, 6] _ 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, ...
get a(5) := 8 and remove the 8th term (= 18):
[2, 3, 5, 6, 8] _ 9, 10, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, ...
get a(6) = 9 and remove the 9th term (= 21), etc.
- _Reinhard Zumkeller_, Feb 04 2014
		

Crossrefs

Programs

  • Haskell
    a087057 n = a087057_list !! (n-1)
    a087057_list = f [2..] where
       f (x:xs) = x : f (us ++ vs) where (us, _ : vs) = splitAt (x - 1) xs
    -- Reinhard Zumkeller, Feb 04 2014
  • Mathematica
    Ceiling[Range[110]Sqrt[2]] (* Harvey P. Dale, Oct 30 2013 *)
  • PARI
    a(n)=ceil(n*sqrt(2)) \\ Charles R Greathouse IV, Oct 24 2011
    
  • PARI
    a(n)=sqrtint(2*n^2+sqrtint(8*n^2)+1) \\ Charles R Greathouse IV, Oct 24 2011
    

Formula

a(n) = 1 + A001951(n) = 1 + floor(n*sqrt(2)) = sqrt(A087058(n)).
a(n) = ceiling(n*sqrt(2)). - Vincenzo Librandi, Oct 22 2011