cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A326864 G.f.: Product_{k>=1} (1 + x^k/k^2) = Sum_{n>=0} a(n)*x^n/n!^2.

Original entry on oeis.org

1, 1, 1, 13, 100, 1876, 57636, 2051316, 104640768, 6819033600, 576652089600, 57187381536000, 7057192160793600, 1014733052692300800, 172646881540527744000, 33848454886497227289600, 7637231669166956976537600, 1948418678155880277481881600
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Examples

			a(n) ~ c * (n-1)!^2, where c = A156648 = Product_{k>=1} (1 + 1/k^2) = sinh(Pi)/Pi = 3.67607791037497772...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 27 2023
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1+x^k/k^2), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!^2

A206820 a(n) is the sum of the squares of the sizes of the conjugacy classes in the symmetric group A_n.

Original entry on oeis.org

1, 1, 3, 42, 914, 23694, 1048542, 45379878, 3272115926, 257662344206, 27726935045366, 3101635433302996, 474878584235678020, 76786899439922296204, 15844064187141655171020, 3326909755872288926885670, 897661138669999282018222470, 246381314116108359863665821750
Offset: 1

Views

Author

Olivier Gérard, Feb 12 2012

Keywords

Comments

a(n) is the sum over all elements of Alt_n of the size of their conjugacy class. Each conjugacy class is thus counted as many times as its size, giving a sum of squares.

Examples

			For n=5, a(5) = 1 + 12^2 + 12^2 + 15^2 + 20^2 = 914.
The class equation of A_5 is  1 + 12 + 12 + 15 + 20  = 60 = 5!/2
		

Crossrefs

A087132 (sequence for S_n), A000702 (conjugacy classes in A_n)

Programs

  • GAP
    A206820 := n -> Sum(ConjugacyClasses(AlternatingGroup(n)), c->Size(c)^2); # Eric M. Schmidt, Jan 26 2014

Extensions

More terms from Eric M. Schmidt, Jan 26 2014

A192983 a(n) is the number of pairs (g, h) of elements of the symmetric group S_n such that g and h have conjugates that commute.

Original entry on oeis.org

1, 4, 24, 264, 5640, 151200, 5722920, 282868992, 18371308032, 1504791561600, 148978034686800, 18007146260231040, 2528615024682544512, 426310052282058252672, 81830910530970671616000, 18305445786667543107072000, 4570435510076312321728158720
Offset: 1

Views

Author

Mark Wildon, Aug 03 2011

Keywords

Comments

a(n) / n!^2 is the probability that two permutation in S_n, chosen independently and uniformly at random, have conjugates that commute.
Apparently n | a(n), and, for n>1, n*(n-1) | a(n). - Alexander R. Povolotsky, Sep 30 2011

Examples

			For n = 3 the probability that two elements of S_3 have conjugates that commute is a(3)/3!^2 = 2/3. Proof: only the transpositions and three cycles fail to have conjugates that commute; the probability of choosing one permutation from each of these classes is 2*1/2*1/3 = 1/3.
		

Crossrefs

Cf. A087132 (the sum of squares of the sizes of the conjugacy classes of S_n).

Programs

  • Haskell
    -- See links for code.

A246879 Decimal expansion of the constant W(1) appearing in the asymptotic expression of the probability that two independent, random n-permutations have the same cycle type as W(1)/n^2.

Original entry on oeis.org

4, 2, 6, 3, 4, 0, 3, 5, 1, 4, 1, 5, 2, 6, 6, 9, 7, 7, 8, 2, 9, 8, 9, 3, 5, 0, 5, 5, 1, 6, 6, 1, 9, 6, 6, 9, 0, 5, 3, 5, 0, 8, 1, 8, 1, 7, 4, 7, 9, 4, 1, 1, 6, 0, 5, 0, 6, 7, 7, 1, 2, 5, 6, 3, 2, 0, 3, 7, 1, 9, 1, 4, 5, 8, 2, 7, 8, 5, 7, 3, 4, 6, 1, 7, 2, 3, 5, 6, 1, 3, 4, 4, 8, 1, 3, 2, 9, 8, 7, 7, 3, 0, 6, 3, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 08 2014

Keywords

Comments

See A087132.

Examples

			4.2634035141526697782989350551661966905350818174794...
		

Crossrefs

Cf. A087132.

Programs

  • Maple
    evalf(product(BesselI(0,2/k), k=1..infinity), 100) # Vaclav Kotesovec, Sep 17 2014
  • Mathematica
    digits = 50; m0 = 1000; dm = 1000; tail[m_] := PolyGamma[1, m] - (1/24)*PolyGamma[3, m] + PolyGamma[5, m]/1080 - (11*PolyGamma[7, m])/967680 + (19*PolyGamma[9, m])/217728000 - (43*PolyGamma[11, m])/94058496000; Clear[f]; f[m_] := f[m] = Sum[Log[BesselI[0, 2/k]], {k, 1, m - 1}] + tail[m] // N[#, digits + 5] &; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 2] != RealDigits[f[m - dm], 10, digits + 2], Print["f(", m, ") = ", f[m]]; m = m + dm];RealDigits[Exp[f[m]], 10, digits] // First

Formula

prod_{k>=1} I_0(2/k), where I_0 is the zeroth modified Bessel function.

Extensions

More terms from Vaclav Kotesovec, Sep 17 2014
Showing 1-4 of 4 results.