A087154 Number of partitions of n into distinct nonsquares.
1, 0, 1, 1, 0, 2, 1, 2, 3, 2, 4, 4, 4, 7, 6, 9, 9, 11, 14, 14, 19, 21, 23, 29, 31, 36, 43, 46, 56, 62, 70, 81, 91, 103, 117, 132, 148, 167, 188, 211, 237, 266, 297, 332, 371, 414, 461, 515, 571, 634, 708, 780, 870, 963, 1062, 1180, 1300, 1436, 1588, 1747, 1929, 2123
Offset: 0
Keywords
Examples
n=7: 2+5 = 7: a(7)=2; n=8: 2+6 = 3+5 = 8: a(8)=3; n=9: 2+7 = 3+6: a(9)=2.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a087154 = p a000037_list where p _ 0 = 1 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m -- Reinhard Zumkeller, Apr 25 2013
-
Mathematica
nmax = 100; CoefficientList[Series[Product[(1 + x^k)/(1 + x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 29 2016 *)
Formula
G.f.: Product_{m>0} (1+x^m)/(1+x^(m^2)). - Vladeta Jovovic, Jul 31 2004
a(n) ~ exp(Pi*sqrt(n/3) - 3^(1/4) * (sqrt(2)-1) * Zeta(3/2) * n^(1/4) / 2 - 3*(sqrt(2)-1)^2 * Zeta(3/2)^2 / (32*Pi)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016
Extensions
Zeroth term added by Franklin T. Adams-Watters, Jan 25 2010