cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A087153 Number of partitions of n into nonsquares.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 5, 5, 8, 9, 13, 15, 20, 24, 30, 37, 47, 55, 71, 83, 103, 123, 151, 178, 218, 257, 310, 366, 440, 515, 617, 722, 857, 1003, 1184, 1380, 1625, 1889, 2214, 2570, 3000, 3472, 4042, 4669, 5414, 6244, 7221, 8303, 9583, 10998, 12655, 14502
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 21 2003

Keywords

Comments

Also, number of partitions of n where there are fewer than k parts equal to k for all k. - Jon Perry and Vladeta Jovovic, Aug 04 2004. E.g. a(8)=5 because we have 8=6+2=5+3=4+4=3+3+2.
Convolution of A276516 and A000041. - Vaclav Kotesovec, Dec 30 2016
From Gus Wiseman, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The Heinz numbers of the integer partitions described in Perry and Jovovic's comment are given by A325128, while the Heinz numbers of the integer partitions described in the name are given by A325129. In the former case, the first 10 terms count the following integer partitions:
() (2) (3) (4) (5) (6) (7) (8) (9)
(32) (33) (43) (44) (54)
(42) (52) (53) (63)
(62) (72)
(332) (432)
while in the latter case they count the following:
() (2) (3) (22) (5) (6) (7) (8) (63)
(32) (33) (52) (53) (72)
(222) (322) (62) (333)
(332) (522)
(2222) (3222)
(End)

Examples

			n=7: 2+5 = 2+2+3 = 7: a(7)=3;
n=8: 2+6 = 2+2+2+2 = 2+3+3 = 3+5 = 8: a(8)=5;
n=9: 2+7 = 2+2+5 = 2+2+2+3 = 3+3+3 = 3+6: a(9)=5.
		

References

  • G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. See page 48.

Crossrefs

Programs

  • Haskell
    a087153 = p a000037_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Apr 25 2013
    
  • Maple
    g:=product((1-x^(i^2))/(1-x^i),i=1..70):gser:=series(g,x=0,60):seq(coeff(gser,x^n),n=1..53); # Emeric Deutsch, Feb 09 2006
  • Mathematica
    nn=54; CoefficientList[ Series[ Product[ Sum[x^(i*j), {j, 0, i - 1}], {i, 1, nn}], {x, 0, nn}], x] (* Robert G. Wilson v, Aug 05 2004 *)
    nmax = 100; CoefficientList[Series[Product[(1 - x^(k^2))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 29 2016 *)
  • PARI
    first(n)=my(x='x+O('x^(n+1))); Vec(prod(m=1,sqrtint(n), (1-x^m^2)/(1-x^m))*prod(m=sqrtint(n)+1,n,1/(1-x^m))) \\ Charles R Greathouse IV, Aug 28 2016

Formula

G.f.: Product_{m>0} (1-x^(m^2))/(1-x^m). - Vladeta Jovovic, Aug 21 2003
a(n) = (1/n)*Sum_{k=1..n} (A000203(k)-A035316(k))*a(n-k), a(0)=1. - Vladeta Jovovic, Aug 21 2003
G.f.: Product_{i>=1} (Sum_{j=0..i-1} x^(i*j)). - Jon Perry, Jul 26 2004
a(n) ~ exp(Pi*sqrt(2*n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / 2^(3/4) - 3*Zeta(3/2)^2/(32*Pi)) * sqrt(Pi) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016

Extensions

Zeroth term added by Franklin T. Adams-Watters, Jan 25 2010

A280276 G.f.: Product_{k>=1} (1 + x^k) / (1 - x^(k^2)).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 17, 24, 33, 46, 62, 82, 108, 141, 182, 233, 297, 375, 472, 590, 733, 907, 1117, 1369, 1671, 2034, 2465, 2978, 3586, 4304, 5152, 6149, 7319, 8689, 10293, 12162, 14340, 16871, 19806, 23207, 27139, 31678, 36909, 42932, 49851, 57794, 66897
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2016

Keywords

Comments

Convolution of A000009 and A001156.

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[(1+x^k)/(1-x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3) + 3^(1/4) * Zeta(3/2) * n^(1/4) / sqrt(2) - 3*Zeta(3/2)^2 / (16*Pi)) / (8*sqrt(6*Pi)*n).

A225045 Number of partitions of n into distinct non-triangular numbers, cf. A014132.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 5, 5, 7, 7, 10, 10, 13, 13, 16, 18, 21, 25, 27, 32, 33, 41, 44, 53, 57, 65, 73, 81, 93, 102, 118, 128, 145, 159, 181, 200, 224, 246, 275, 304, 337, 375, 413, 460, 503, 559, 614, 679, 749, 821, 907, 991, 1096, 1197, 1319, 1442, 1582, 1733, 1893, 2076, 2265, 2482, 2702, 2956, 3220
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 25 2013

Keywords

Examples

			a(10) = #{8+2} = 1;
a(11) = #{11, 9+2, 7+4, 5+4+2} = 4;
a(12) = #{12, 8+4, 7+5} = 3;
a(13) = #{13, 11+2, 9+4, 8+5, 7+4+2} = 5.
		

Crossrefs

Programs

  • Haskell
    a225045 = p a014132_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    
  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, 1, add(b(n-i*j, i-1), j=0..min(n/i,
          `if`(issqr(8*i+1), 0, 1)))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n > i*(i+1)/2, 0, If[n==0, 1, Sum[b[n-i*j, i-1], {j, 0, Min[n/i, If[IntegerQ[Sqrt[8*i+1]], 0, 1]]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N); Vec( prod(n=1,N, 1 + q^n) / prod(n=1,N, 1 + q^(n*(n+1)/2)) ) \\ Joerg Arndt, Apr 01 2014

Formula

G.f.: prod(n>=1, 1 + q^n ) / prod(n>=1, 1 + q^(n*(n+1)/2) ). [Joerg Arndt, Apr 01 2014]
a(n) ~ exp(Pi*sqrt(n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / (2+sqrt(2)) - 3*(3-2*sqrt(2)) * Zeta(3/2)^2 / (16*Pi)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jan 02 2017

A280264 G.f.: Product_{k>=1} (1+x^k) / (1+x^(k^3)).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 2, 5, 4, 6, 7, 8, 10, 12, 15, 16, 21, 23, 28, 33, 38, 44, 51, 60, 68, 79, 91, 103, 120, 136, 156, 177, 202, 230, 260, 296, 333, 378, 425, 480, 540, 606, 682, 764, 857, 958, 1073, 1197, 1337, 1492, 1660, 1849, 2057, 2285, 2537, 2816
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2016

Keywords

Comments

Number of partitions of n into distinct noncubes (A007412). - Ilya Gutkovskiy, Dec 31 2016

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Product[(1+x^k)/(1+x^(k^3)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3) - (2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3) * n^(1/6) / (3^(5/6) * Pi^(1/3))) / (2^(3/2) * 3^(1/4) * n^(3/4)).
Showing 1-4 of 4 results.