cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087161 Records in A087159, i.e., A087159(a(n)) = n, and satisfies the recurrence a(n+3) = 5*a(n+2) - 6* a(n+1) + 2*a(n) with a(1) = 1, a(2) = 2, and a(3) = 4.

Original entry on oeis.org

1, 2, 4, 10, 30, 98, 330, 1122, 3826, 13058, 44578, 152194, 519618, 1774082, 6057090, 20680194, 70606594, 241065986, 823050754, 2810071042, 9594182658, 32756588546, 111837988866, 381838778370, 1303679135746, 4451038986242
Offset: 1

Views

Author

Paul D. Hanna, Aug 22 2003

Keywords

Comments

Binomial transform of A001333 (which, with an extra leading 1, is the expansion of (1 - x - 2*x^2)/(1 - 2*x - x^2)). - Paul Barry, Aug 26 2003
Partial sums of the binomial transform of Pell(n-1). - Paul Barry, Apr 24 2004

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-3x)/(1-5x+6x^2-2x^3),{x,0,30}],x] (* or *) LinearRecurrence[{5,-6,2},{1,2,4},30] (* Harvey P. Dale, Oct 12 2015 *)

Formula

G.f.: x*(1 - 3*x)/(1 - 5*x + 6*x^2 - 2*x^3).
a(n) = 2 + 2*A007070(n-3) for n > 2.
a(n) = ((2 - sqrt(2))^(n)/(1 - sqrt(2)) + (2 + sqrt(2))^(n)/(1 + sqrt(2)))/2 + 2 (offset 0) - Paul Barry, Aug 26 2003
a(n+1) - a(n) = A006012(n-1) for n >= 2. - Philippe Deléham, Feb 01 2012
a(1) = 1, a(2) = 2, a(3) = 4, a(n) = 5*a(n-1) - 6*a(n-2) + 2*a(n-3) for n >= 4. - Harvey P. Dale, Oct 12 2015
a(n+1) = Sum_{k=0..n} A100631(n,k) for n >= 0. - Petros Hadjicostas, Feb 09 2021

Extensions

More terms from Paul Barry, Apr 24 2004