A087173 Smallest prime factor of n-th partition number.
1, 2, 3, 5, 7, 11, 3, 2, 2, 2, 2, 7, 101, 3, 2, 3, 3, 5, 2, 3, 2, 2, 5, 3, 2, 2, 2, 2, 5, 2, 2, 3, 3, 2, 3, 17977, 7, 5, 3, 2, 3, 2, 3, 5, 2, 2, 2, 3, 5, 2, 3, 3, 3, 5, 2, 11, 2, 2, 2, 17, 3, 2, 3, 2, 2, 2, 1181, 3, 5, 2, 3, 11, 23, 2, 2, 7, 10619863, 2, 2, 2, 11, 5, 7, 2, 11, 2, 11, 3, 5, 2473
Offset: 1
Keywords
Examples
A000041(100) = 190569292 = 2*2*43*59*89*211, therefore a(100)=2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Least Prime Factor
- Eric Weisstein's World of Mathematics, Partition Function
- Eric Weisstein's World of Mathematics, Partition Function P Congruences
Crossrefs
Cf. A071963.
Programs
-
Mathematica
FactorInteger[#][[1,1]]&/@PartitionsP[Range[90]] (* Harvey P. Dale, May 20 2023 *)
-
PARI
spf(n) = if (n==1, 1, vecmin(factor(n)[,1])); a(n) = spf(numbpart(n)); \\ Michel Marcus, Feb 24 2023