cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A087197 Decimal expansion of 1/sqrt(Pi).

Original entry on oeis.org

5, 6, 4, 1, 8, 9, 5, 8, 3, 5, 4, 7, 7, 5, 6, 2, 8, 6, 9, 4, 8, 0, 7, 9, 4, 5, 1, 5, 6, 0, 7, 7, 2, 5, 8, 5, 8, 4, 4, 0, 5, 0, 6, 2, 9, 3, 2, 8, 9, 9, 8, 8, 5, 6, 8, 4, 4, 0, 8, 5, 7, 2, 1, 7, 1, 0, 6, 4, 2, 4, 6, 8, 4, 4, 1, 4, 9, 3, 4, 1, 4, 4, 8, 6, 7, 4, 3, 6, 6, 0, 2, 0, 2, 1, 0, 7, 3, 6, 3, 4, 4, 3, 0, 2, 8
Offset: 0

Views

Author

Sven Simon, Aug 24 2003

Keywords

Comments

Radius of a circle with area 1.
Expectation of the maximum of a size 2 sample from a normal (0,1) distribution. - Jean-François Alcover, Jun 05 2014

Examples

			0.56418958354775628694...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

Formula

Equals lim_{n -> infinity} Catalan(n)/(4^n*n^(-3/2)). - Jean-François Alcover, May 23 2013
Equals Sum_{k>=1} k/(2^k * Gamma(k+3/2)). - Amiram Eldar, May 27 2021

A232808 Decimal expansion of the surface area of a 3D sphere with unit volume.

Original entry on oeis.org

4, 8, 3, 5, 9, 7, 5, 8, 6, 2, 0, 4, 9, 4, 0, 8, 9, 2, 2, 1, 5, 0, 9, 0, 0, 5, 3, 9, 9, 1, 7, 8, 5, 4, 8, 1, 6, 8, 3, 3, 8, 4, 2, 2, 1, 6, 9, 7, 1, 5, 8, 4, 6, 6, 7, 0, 7, 6, 8, 7, 6, 2, 2, 6, 1, 3, 6, 8, 5, 2, 8, 9, 5, 1, 7, 1, 4, 3, 5, 8, 2, 2, 7, 3, 8, 4, 6
Offset: 1

Views

Author

Stanislav Sykora, Nov 30 2013

Keywords

Comments

More generally, the ratio (surface)/(volume)^(2/3), characteristic of the shape of a bounded 3D body, which is invariant under linear scaling and known as the surface index. Its common value for all spheres is the smallest possible among all closed 3D bodies (for a cube, for example, it is exactly 6.0).

Examples

			4.83597586204940892215090053991785481683384221697158466707687622613685...
		

Crossrefs

Cf. A000796 (Pi), A019673 (Pi/6); other sphere metrics: A019694, A019699, A087198, A087199.

Programs

  • Mathematica
    RealDigits[(36 Pi)^(1/3), 10, 90][[1]] (* Bruno Berselli, Dec 01 2013 *)

Formula

(36*Pi)^(1/3) = 6*A019673^(1/3).

A019707 Decimal expansion of sqrt(Pi)/5.

Original entry on oeis.org

3, 5, 4, 4, 9, 0, 7, 7, 0, 1, 8, 1, 1, 0, 3, 2, 0, 5, 4, 5, 9, 6, 3, 3, 4, 9, 6, 6, 6, 8, 2, 2, 9, 0, 3, 6, 5, 5, 9, 5, 0, 9, 8, 9, 1, 2, 2, 4, 4, 7, 7, 4, 2, 5, 6, 4, 2, 7, 6, 1, 5, 5, 7, 9, 7, 0, 5, 8, 2, 2, 5, 6, 9, 1, 8, 2, 0, 6, 4, 3, 6, 2, 7, 4, 9, 9, 0, 1, 3, 1, 3, 4, 7, 7, 0, 8, 9, 3, 3
Offset: 0

Views

Author

Keywords

Comments

With offset 1 this is the decimal expansion of 2*sqrt(Pi) = 3.544907..., which is the smallest possible perimeter index eta=P/sqrt(A) of all figures (not necessarily connected) in the Euclidean plane with a continuous boundary of length P (perimeter) enclosing a finite area A. The smallest value is attained only by a Euclidean planar disk. For example, eta=4 for squares, eta=2(sqrt(a/b)+sqrt(b/a))>=4 for aXb rectangles, and eta=4.559014... (A268604) for equilateral triangles. - Stanislav Sykora, Feb 08 2016

Examples

			0.3544907701811...= 0.2*A002161.
		

Crossrefs

Programs

Formula

sqrt(Pi)/5 = sqrt(4 * Pi)/10.
Equals -Gamma(-1/2)/10, where Gamma is Euler's gamma function. - Lee A. Newberg, Mar 05 2024

A087199 Decimal expansion of (3/(4*Pi))^(1/3).

Original entry on oeis.org

6, 2, 0, 3, 5, 0, 4, 9, 0, 8, 9, 9, 4, 0, 0, 0, 1, 6, 6, 6, 8, 0, 0, 6, 8, 1, 2, 0, 4, 7, 7, 7, 8, 1, 6, 7, 3, 5, 0, 7, 8, 6, 2, 0, 0, 1, 8, 6, 0, 0, 1, 6, 2, 0, 0, 9, 8, 9, 5, 6, 8, 8, 9, 9, 1, 3, 1, 4, 6, 9, 0, 6, 0, 6, 0, 0, 3, 3, 3, 6, 4, 1, 8, 5, 5, 1, 6, 2, 5, 3, 1, 8, 1, 4, 9, 2, 4, 3, 2, 8, 0, 0, 7, 3, 1
Offset: 0

Views

Author

Sven Simon, Aug 24 2003

Keywords

Comments

Radius of a sphere of volume 1.

Examples

			0.62035049089940001666800681204777816735078620018600162009895688991314690606003....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3/(4 Pi))^(1/3), 10, 111][[1]] (* Robert G. Wilson v, Sep 29 2014 *)

A073001 Decimal expansion of Bernstein's constant.

Original entry on oeis.org

2, 8, 0, 1, 6, 9, 4, 9, 9, 0, 2, 3, 8, 6, 9, 1, 3, 3, 0, 3, 6, 4, 3, 6, 4, 9, 1, 2, 3, 0, 6, 7, 2, 0, 0, 0, 0, 4, 2, 4, 8, 2, 1, 3, 9, 8, 1, 2, 3, 6
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Named after the Russian and Soviet mathematician Sergei Natanovich Bernstein (1880-1968). - Amiram Eldar, Jun 06 2021

Examples

			0.2801694990238691330364364912306720000424821398...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 4.4, p. 258.

Crossrefs

Cf. A087198 (the value conjectured by Bernstein in 1913).

A378942 Decimal expansion of (1/sqrt(Pi) + e*erfc(-1))/2.

Original entry on oeis.org

2, 7, 8, 6, 5, 8, 4, 8, 3, 2, 1, 5, 5, 0, 1, 9, 8, 7, 6, 6, 2, 8, 9, 5, 2, 0, 2, 4, 8, 8, 7, 7, 9, 1, 2, 0, 0, 2, 6, 9, 1, 9, 2, 6, 5, 6, 7, 8, 2, 3, 3, 2, 6, 7, 1, 5, 1, 6, 2, 4, 0, 6, 0, 3, 2, 0, 9, 1, 4, 5, 1, 5, 3, 6, 6, 4, 1, 7, 2, 6, 7, 9, 2, 1, 1, 2, 2, 9, 9, 6, 2, 2, 6, 6, 5, 2, 6, 8, 4, 2
Offset: 1

Views

Author

Stefano Spezia, Dec 11 2024

Keywords

Examples

			2.7865848321550198766289520248877912002691926567823...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 4.6, p. 262.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/Sqrt[Pi]+E Erfc[-1])/2,10,100][[1]]

Formula

Equals (1 + e*sqrt(Pi)*(1 + erf(1)))/(2*sqrt(Pi)).
Equals A222392 / 2. - Amiram Eldar, Feb 15 2025
Showing 1-6 of 6 results.