cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A016814 a(n) = (4*n + 1)^2.

Original entry on oeis.org

1, 25, 81, 169, 289, 441, 625, 841, 1089, 1369, 1681, 2025, 2401, 2809, 3249, 3721, 4225, 4761, 5329, 5929, 6561, 7225, 7921, 8649, 9409, 10201, 11025, 11881, 12769, 13689, 14641, 15625, 16641, 17689, 18769, 19881, 21025, 22201, 23409, 24649, 25921, 27225, 28561, 29929
Offset: 0

Views

Author

Keywords

Comments

A bisection of A016754. Sequence arises from reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), this sequence (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).

Programs

Formula

a(n) = a(n-1) + 32*n - 8, n > 0. - Vincenzo Librandi, Dec 15 2010
From George F. Johnson, Sep 28 2012: (Start)
G.f.: (1 + 22*x + 9*x^2)/(1 - x)^3.
a(n+1) = a(n) + 16 + 8*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 32 = 3*a(n) - 3*a(n-1) + a(n-2).
a(n-1)*a(n+1) = (a(n) - 16)^2 ; a(n+1) - a(n-1) = 16*sqrt(a(n)).
a(n) = A016754(2*n) = (A016813(n))^2. (End)
Sum_{n>=0} 1/a(n) = G/2 + Pi^2/16, where G is the Catalan constant (A006752). - Amiram Eldar, Jun 28 2020
Product_{n>=1} (1 - 1/a(n)) = 2*Gamma(5/4)^2/sqrt(Pi) = 2 * A068467^2 * A087197. - Amiram Eldar, Feb 01 2021
From G. C. Greubel, Dec 28 2022: (Start)
a(2*n) = A017078(n).
a(2*n+1) = A017126(n).
E.g.f.: (1 + 24*x + 16*x^2)*exp(x). (End)
a(n) = A272399(n+1) - A014105(n). - Leo Tavares, Dec 24 2023

A016838 a(n) = (4n + 3)^2.

Original entry on oeis.org

9, 49, 121, 225, 361, 529, 729, 961, 1225, 1521, 1849, 2209, 2601, 3025, 3481, 3969, 4489, 5041, 5625, 6241, 6889, 7569, 8281, 9025, 9801, 10609, 11449, 12321, 13225, 14161, 15129, 16129, 17161, 18225
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 2-subset of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
A bisection of A016754. Sequence arises from reading the line from 9, in the direction 9, 49, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Using (n,n+1) to generate a Pythagorean triangle with sides of lengths xJ. M. Bergot, Jul 17 2013

Crossrefs

Programs

Formula

Denominators of first differences Zeta[2,(4n-1)/4]-Zeta[2,(4(n+1)-1)/4]. - Artur Jasinski, Mar 03 2010
From George F. Johnson, Oct 03 2012: (Start)
G.f.: (9+22*x+x^2)/(1-x)^3.
a(n+1) = a(n) + 16 + 8*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 32 = 3*a(n) - 3*a(n-1) + a(n-2).
a(n-1)*a(n+1) = (a(n)-16)^2; a(n+1) - a(n-1) = 16*sqrt(a(n)).
a(n) = A016754(2*n+1) = (A004767(n))^2.
(End)
Sum_{n>=0} 1/a(n) = Pi^2/16 - G/2, where G is the Catalan constant (A006752). - Amiram Eldar, Jun 28 2020
Product_{n>=0} (1 - 1/a(n)) = Gamma(3/4)^2/sqrt(Pi) = A068465^2 * A087197. - Amiram Eldar, Feb 01 2021

A243446 Decimal expansion of 3/(2*sqrt(Pi)).

Original entry on oeis.org

8, 4, 6, 2, 8, 4, 3, 7, 5, 3, 2, 1, 6, 3, 4, 4, 3, 0, 4, 2, 2, 1, 1, 9, 1, 7, 7, 3, 4, 1, 1, 5, 8, 8, 7, 8, 7, 6, 6, 0, 7, 5, 9, 4, 3, 9, 9, 3, 4, 9, 8, 2, 8, 5, 2, 6, 6, 1, 2, 8, 5, 8, 2, 5, 6, 5, 9, 6, 3, 7, 0, 2, 6, 6, 2, 2, 4, 0, 1, 2, 1, 7, 3, 0, 1, 1, 5, 4, 9, 0, 3, 0, 3, 1, 6, 1, 0, 4, 5
Offset: 0

Views

Author

Jean-François Alcover, Jun 05 2014

Keywords

Comments

Expectation of the maximum of a size 3 sample from a normal (0,1) distribution.

Examples

			0.846284375321634430422119177341158878766...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

  • Mathematica
    RealDigits[3/(2*Sqrt[Pi]), 10, 99] // First
  • PARI
    3/(2*sqrt(Pi)) \\ G. C. Greubel, Jan 09 2017

A364394 G.f. satisfies A(x) = 1 + x/A(x)*(1 + 1/A(x)).

Original entry on oeis.org

1, 2, -6, 34, -238, 1858, -15510, 135490, -1223134, 11320066, -106830502, 1024144482, -9945711566, 97634828354, -967298498358, 9659274283650, -97119829841854, 982391779220482, -9990160542904134, 102074758837531810, -1047391288012377774, 10788532748880319298
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2023

Keywords

Crossrefs

Programs

  • Maple
    A364394 := proc(n)
        if n = 0 then
            1;
        else
        (-1)^(n-1)*add( binomial(n,k) * binomial(2*n+k-2,n-1),k=0..n)/n ;
        end if;
    end proc:
    seq(A364394(n),n=0..80); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n+k-2, n-1))/n);

Formula

G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A027307.
a(n) = (-1)^(n-1) * (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n+k-2,n-1) = (-1)^(n-1) * A108424(n) for n > 0.
D-finite with recurrence n*(2*n-1)*a(n) +3*(6*n^2-10*n+3)*a(n-1) +(-46*n^2+227*n-279)*a(n-2) +2*(n-3)*(2*n-7)*a(n-3)=0. - R. J. Mathar, Jul 25 2023
a(n) ~ c*(-1)^(n-1)*4^n*2F1([-n, 2*n-1], [n], -1)*n^(-3/2), with c = 1/(4*sqrt(Pi)) = A087197/4. - Stefano Spezia, Oct 21 2023

A087198 Decimal expansion of 1/(2*sqrt(Pi)).

Original entry on oeis.org

2, 8, 2, 0, 9, 4, 7, 9, 1, 7, 7, 3, 8, 7, 8, 1, 4, 3, 4, 7, 4, 0, 3, 9, 7, 2, 5, 7, 8, 0, 3, 8, 6, 2, 9, 2, 9, 2, 2, 0, 2, 5, 3, 1, 4, 6, 6, 4, 4, 9, 9, 4, 2, 8, 4, 2, 2, 0, 4, 2, 8, 6, 0, 8, 5, 5, 3, 2, 1, 2, 3, 4, 2, 2, 0, 7, 4, 6, 7, 0, 7, 2, 4, 3, 3, 7, 1, 8, 3, 0, 1, 0, 1, 0, 5, 3, 6, 8, 1, 7, 2, 1, 5, 1, 4
Offset: 0

Views

Author

Sven Simon, Aug 24 2003

Keywords

Comments

Radius of a sphere with surface area 1.
According to Fouad (2004), to simulate the distance of a sound source under free field conditions, one can multiply "the waveform directly by a gain factor that is the square root of the intensity," which can be computed with the formula D = sqrt(1/(4 * Pi * d^2)) = 1/(3.55 * d), where d is the distance between the sound source and the listener and 3.55 is approximately 10(sqrt(Pi)/5) (A019707) (equation 15 in the chapter), though "in practice we usually drop the constant multiplier" (4 * Pi). If the distance is one unit, then D works out to this number. - Alonso del Arte, Jun 10 2012

Examples

			0.28209479177387814347...
		

References

  • Hesham Fouad, "Spatialization with Stereo Loudspeakers: Understanding Balance, Panning and Distance Attenuation" in Audio Anecdotes II: Tools, Tips, and Techniques for Digital Audio, K. Greenebaum & R. Barzel, eds. Wellesley, Massachusetts: A K Peters (2004): 150 - 153

Crossrefs

Programs

Formula

1/(2 * sqrt(Pi)) = sqrt(1/(4 * Pi)).

A243447 Decimal expansion of 1-9/(4*Pi)+sqrt(3)/(2*Pi), an extreme value constant.

Original entry on oeis.org

5, 5, 9, 4, 6, 7, 2, 0, 3, 7, 9, 7, 3, 6, 7, 0, 1, 3, 7, 9, 5, 6, 8, 6, 3, 1, 3, 9, 8, 0, 1, 7, 0, 0, 9, 1, 5, 4, 3, 6, 2, 4, 8, 3, 4, 3, 5, 1, 2, 6, 6, 3, 0, 7, 0, 3, 5, 1, 7, 9, 9, 6, 1, 8, 8, 0, 4, 7, 9, 5, 6, 2, 3, 8, 0, 6, 1, 5, 4, 8, 9, 5, 1, 4, 6, 7, 7, 9, 0, 1, 9, 6, 3, 4, 4, 6, 5, 5, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 05 2014

Keywords

Comments

Variance of the maximum of a size 3 sample from a normal (0,1) distribution.

Examples

			0.55946720379736701379568631398017...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - 9/(4*Pi) + Sqrt[3]/(2*Pi), 10, 100] // First
  • PARI
    1-9/4/Pi + sqrt(3)/2/Pi \\ Charles R Greathouse IV, Sep 28 2022

A076668 Decimal expansion of sqrt(2/Pi).

Original entry on oeis.org

7, 9, 7, 8, 8, 4, 5, 6, 0, 8, 0, 2, 8, 6, 5, 3, 5, 5, 8, 7, 9, 8, 9, 2, 1, 1, 9, 8, 6, 8, 7, 6, 3, 7, 3, 6, 9, 5, 1, 7, 1, 7, 2, 6, 2, 3, 2, 9, 8, 6, 9, 3, 1, 5, 3, 3, 1, 8, 5, 1, 6, 5, 9, 3, 4, 1, 3, 1, 5, 8, 5, 1, 7, 9, 8, 6, 0, 3, 6, 7, 7, 0, 0, 2, 5, 0, 4, 6, 6, 7, 8, 1, 4, 6, 1, 3, 8, 7, 2, 8, 6, 0, 6, 0
Offset: 0

Views

Author

Zak Seidov, Oct 25 2002

Keywords

Comments

This is the limit of (n+1)!!/n!!/n^(1/2) at n_even->inf.
Expected value of |x - mu|/sigma for normal distribution with mean mu and standard deviation sigma (i.e., the normalized mean absolute deviation). - Stanislav Sykora, Jun 30 2017

Examples

			0.79788456080286535587989211986876373695171726232986931533...
		

Crossrefs

Cf. A004730, A004731, A019727, A060294 (Buffon's constant 2/Pi), A092678 (probable error).

Programs

  • Magma
    pi:=Sqrt(2/Pi(RealField(110))); Reverse(Intseq(Floor(10^110*pi))); // Vincenzo Librandi, Jul 01 2017
    
  • Mathematica
    RealDigits[Sqrt[2/Pi],10,120][[1]] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    sqrt(2/Pi) \\ G. C. Greubel, Sep 23 2017

Formula

Equals A087197*A002193. - R. J. Mathar Feb 05 2009
Equals integral_{-infinity..infinity} (1-erf(x)^2)/2 dx. - Jean-François Alcover, Feb 25 2015

Extensions

More terms and better description from Benoit Cloitre and Michael Somos, Oct 29 2002
Leading zero removed, offset changed by R. J. Mathar, Feb 05 2009

A243448 Decimal expansion of 6*arcsec(sqrt(3))/Pi^(3/2), an extreme value constant.

Original entry on oeis.org

1, 0, 2, 9, 3, 7, 5, 3, 7, 3, 0, 0, 3, 9, 6, 4, 1, 3, 2, 0, 5, 6, 9, 8, 6, 6, 4, 6, 9, 8, 0, 9, 7, 3, 1, 8, 3, 4, 8, 5, 3, 7, 3, 8, 7, 8, 3, 9, 2, 6, 6, 5, 2, 4, 7, 0, 9, 6, 1, 1, 9, 6, 2, 2, 0, 2, 7, 7, 4, 2, 8, 5, 7, 3, 4, 9, 1, 7, 3, 6, 1, 6, 0, 6, 6, 4, 8, 0, 2, 7, 1, 6, 2, 8, 3, 6, 0, 0, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2014

Keywords

Comments

Expectation of the maximum of a size 4 sample from a normal (0,1) distribution.

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

  • Mathematica
    RealDigits[6*ArcSec[Sqrt[3]]/Pi^(3/2), 10, 99] // First

A243452 Decimal expansion of the variance of the maximum of a size 4 sample from a normal (0,1) distribution.

Original entry on oeis.org

4, 9, 1, 7, 1, 5, 2, 3, 6, 8, 7, 4, 7, 4, 1, 7, 6, 0, 6, 8, 1, 7, 4, 7, 0, 0, 9, 9, 8, 5, 8, 8, 7, 0, 2, 2, 9, 0, 5, 8, 9, 0, 6, 9, 1, 8, 2, 7, 1, 0, 1, 2, 5, 0, 1, 1, 7, 4, 9, 7, 9, 8, 7, 5, 0, 4, 9, 2, 4, 6, 6, 0, 5, 0, 1, 5, 2, 9, 3, 7, 1, 4, 1, 3, 8, 5, 8, 2, 8, 9, 8, 5, 1, 8, 6, 7, 2, 2, 5, 3, 8, 5
Offset: 0

Views

Author

Jean-François Alcover, Jun 05 2014

Keywords

Examples

			0.4917152368747417606817470099858870229...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Sqrt[3]/Pi - 36*ArcSec[Sqrt[3]]^2/Pi^3, 10, 102] // First

Formula

1 + sqrt(3)/Pi - 36*arcsec(sqrt(3))^2/Pi^3.

A243453 Decimal expansion of the expectation of the maximum of a size 5 sample from a normal (0,1) distribution.

Original entry on oeis.org

1, 1, 6, 2, 9, 6, 4, 4, 7, 3, 6, 4, 0, 5, 1, 9, 6, 1, 2, 7, 7, 2, 2, 6, 7, 9, 8, 8, 5, 5, 0, 5, 0, 1, 4, 9, 4, 1, 0, 3, 3, 0, 8, 1, 2, 2, 6, 5, 9, 1, 6, 5, 9, 7, 5, 6, 3, 0, 0, 8, 4, 7, 5, 0, 7, 9, 2, 7, 5, 0, 9, 7, 2, 2, 6, 9, 2, 0, 0, 5, 0, 3, 9, 4, 9, 3, 4, 1, 5, 2, 8, 5, 6, 5, 6, 3, 1, 8, 1, 6, 7, 6
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2014

Keywords

Examples

			1.1629644736405196127722679885505014941...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

  • Mathematica
    RealDigits[5/Sqrt[Pi] - 15*ArcCsc[Sqrt[3]]/Pi^(3/2), 10, 102] // First
  • PARI
    5/sqrt(Pi) - 15*asin(1/sqrt(3))/Pi^(3/2) \\ G. C. Greubel, Feb 01 2017

Formula

5/sqrt(Pi) - 15*arccsc(sqrt(3))/Pi^(3/2).
Showing 1-10 of 26 results. Next