A087279 Nonnegative numbers whose distance to the nearest positive square equals exactly 1.
0, 2, 3, 5, 8, 10, 15, 17, 24, 26, 35, 37, 48, 50, 63, 65, 80, 82, 99, 101, 120, 122, 143, 145, 168, 170, 195, 197, 224, 226, 255, 257, 288, 290, 323, 325, 360, 362, 399, 401, 440, 442, 483, 485, 528, 530, 575, 577, 624, 626, 675, 677, 728, 730, 783, 785, 840
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Haskell
a087279 n = a087279_list !! (n-1) a087279_list = 0 : 2 : f (drop 2 a000290_list) where f (x:xs) = x-1 : x+1 : f xs -- Reinhard Zumkeller, Nov 01 2013
-
Magma
&cat[[n^2-1,n^2+1]: n in [1..30]]; // Bruno Berselli, Apr 21 2011
-
Mathematica
Union[(r = Range[30]^2) - 1, r + 1] (* Jean-François Alcover, Oct 25 2013 *) Flatten[#+{1,-1}&/@(Range[30]^2)]//Union (* Harvey P. Dale, Oct 15 2016 *)
-
PARI
a(n)=if(n%2,(n+1)^2/4-1,n^2/4+1) \\ Charles R Greathouse IV, Apr 25 2012
-
Python
def A087279(n): return ((n+(b:=n&1))**2>>2)+1-(b<<1) # Chai Wah Wu, Aug 03 2022
Formula
a(1) = 0; a(2*k+1) = a(2*k) + 2*k-1; a(2*k) = a(2*k-1) + 2.
a(n-1) = floor((n+1)/2)^2+(-1)^(n mod 2).
From Bruno Berselli, Apr 21 2011: (Start)
G.f.: x^2*(2+x-2*x^2+x^3)/((1+x)^2*(1-x)^3).
a(n) = (2*n*(n+1) - (2*n-7)*(-1)^n+1)/8. (End)
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=2} 1/a(n) = coth(Pi)*Pi/2 + 1/4.
Sum_{n>=2} (-1)^n/a(n) = coth(Pi)*Pi/2 - 5/4. (End)
Extensions
Franklin T. Adams-Watters pointed out on Jun 26 2007 that there were problems with the first couple of terms. I have made some changes, so now the definition matches the sequence. But some of the comments may need further minor adjustments. - N. J. A. Sloane, Jun 01 2008
Comments