cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087279 Nonnegative numbers whose distance to the nearest positive square equals exactly 1.

Original entry on oeis.org

0, 2, 3, 5, 8, 10, 15, 17, 24, 26, 35, 37, 48, 50, 63, 65, 80, 82, 99, 101, 120, 122, 143, 145, 168, 170, 195, 197, 224, 226, 255, 257, 288, 290, 323, 325, 360, 362, 399, 401, 440, 442, 483, 485, 528, 530, 575, 577, 624, 626, 675, 677, 728, 730, 783, 785, 840
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 28 2003

Keywords

Comments

Union of A005563 and A002522\{1}: a(2*k+1) = (k+1)^2 - 1 = A005563(k); a(2*k) = k^2 + 1 = A002522(k); positive square + 1 or positive square - 1.

Crossrefs

Programs

  • Haskell
    a087279 n = a087279_list !! (n-1)
    a087279_list = 0 : 2 : f (drop 2 a000290_list)
       where f (x:xs) = x-1 : x+1 : f xs
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Magma
    &cat[[n^2-1,n^2+1]: n in [1..30]]; // Bruno Berselli, Apr 21 2011
    
  • Mathematica
    Union[(r = Range[30]^2) - 1, r + 1] (* Jean-François Alcover, Oct 25 2013 *)
    Flatten[#+{1,-1}&/@(Range[30]^2)]//Union (* Harvey P. Dale, Oct 15 2016 *)
  • PARI
    a(n)=if(n%2,(n+1)^2/4-1,n^2/4+1) \\ Charles R Greathouse IV, Apr 25 2012
    
  • Python
    def A087279(n): return ((n+(b:=n&1))**2>>2)+1-(b<<1) # Chai Wah Wu, Aug 03 2022

Formula

a(1) = 0; a(2*k+1) = a(2*k) + 2*k-1; a(2*k) = a(2*k-1) + 2.
a(n-1) = floor((n+1)/2)^2+(-1)^(n mod 2).
From Bruno Berselli, Apr 21 2011: (Start)
G.f.: x^2*(2+x-2*x^2+x^3)/((1+x)^2*(1-x)^3).
a(n) = (2*n*(n+1) - (2*n-7)*(-1)^n+1)/8. (End)
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=2} 1/a(n) = coth(Pi)*Pi/2 + 1/4.
Sum_{n>=2} (-1)^n/a(n) = coth(Pi)*Pi/2 - 5/4. (End)

Extensions

Franklin T. Adams-Watters pointed out on Jun 26 2007 that there were problems with the first couple of terms. I have made some changes, so now the definition matches the sequence. But some of the comments may need further minor adjustments. - N. J. A. Sloane, Jun 01 2008