A087404 a(n) = 4*a(n-1) + 5*a(n-2) for n > 1, with a(0) = 2 and a(1) = 4.
2, 4, 26, 124, 626, 3124, 15626, 78124, 390626, 1953124, 9765626, 48828124, 244140626, 1220703124, 6103515626, 30517578124, 152587890626, 762939453124, 3814697265626, 19073486328124, 95367431640626, 476837158203124, 2384185791015626, 11920928955078124, 59604644775390626
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1430
- Weerayuth Nilsrakoo and Achariya Nilsrakoo, On One-Parameter Generalization of Jacobsthal Numbers, WSEAS Trans. Math. (2025) Vol. 24, 51-61. See p. 3.
- Index entries for linear recurrences with constant coefficients, signature (4,5).
Programs
-
Mathematica
CoefficientList[Series[(2 - 4x)/(1 - 4x - 5x^2), {x, 0, 25}], x] LinearRecurrence[{4,5},{2,4},30] (* Harvey P. Dale, May 13 2022 *)
-
Sage
[lucas_number2(n,4,-5) for n in range(0, 22)] # Zerinvary Lajos, May 14 2009
Formula
G.f.: (2 - 4*x)/(1 - 4*x - 5*x^2).
a(n) = 5^n + (-1)^n.
From Elmo R. Oliveira, Aug 23 2024: (Start)
E.g.f.: exp(-x)*(exp(6*x) + 1).
a(n) = 2*A081340(n). (End)
Extensions
a(22)-a(24) from Elmo R. Oliveira, Aug 23 2024
Comments