Original entry on oeis.org
2, 2, 22, 98, 502, 2498, 12502, 62498, 312502, 1562498, 7812502, 39062498, 195312502, 976562498, 4882812502, 24414062498, 122070312502, 610351562498, 3051757812502, 15258789062498, 76293945312502, 381469726562498, 1907348632812502, 9536743164062498
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Sep 01 2003
-
CoefficientList[Series[((1 - x)(2 - 4x))/(1 - 4x - 5x^2), {x, 0, 25}], x]
LinearRecurrence[{4,5},{2,2,22},30] (* Harvey P. Dale, Oct 23 2024 *)
A081340
(5^n+(-1)^n)/2.
Original entry on oeis.org
1, 2, 13, 62, 313, 1562, 7813, 39062, 195313, 976562, 4882813, 24414062, 122070313, 610351562, 3051757813, 15258789062, 76293945313, 381469726562, 1907348632813, 9536743164062, 47683715820313, 238418579101562
Offset: 0
-
CoefficientList[Series[(1 - 2 x) / ((1 + x) (1 - 5 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 08 2013 *)
-
a(n)=(5^n+(-1)^n)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
[lucas_number2(n,4,-5)/2 for n in range(0, 22)] # Zerinvary Lajos, May 14 2009
A201455
a(n) = 3*a(n-1) + 4*a(n-2) for n>1, a(0)=2, a(1)=3.
Original entry on oeis.org
2, 3, 17, 63, 257, 1023, 4097, 16383, 65537, 262143, 1048577, 4194303, 16777217, 67108863, 268435457, 1073741823, 4294967297, 17179869183, 68719476737, 274877906943, 1099511627777, 4398046511103, 17592186044417, 70368744177663, 281474976710657
Offset: 0
Cf. for the same recurrence with initial values (i,i+1):
A015521 (Lucas sequence U(3,-4); i=0),
A122117 (i=1),
A189738 (i=3).
-
[n le 1 select n+2 else 3*Self(n)+4*Self(n-1): n in [0..25]];
-
RecurrenceTable[{a[n] == 3 a[n - 1] + 4 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}]
-
a[0]:2$ a[1]:3$ a[n]:=3*a[n-1]+4*a[n-2]$ makelist(a[n], n, 0, 25);
-
Vec((2-3*x)/((1+x)*(1-4*x)) + O(x^30)) \\ Michel Marcus, Jun 26 2015
A274074
a(n) = 6^n+(-1)^n.
Original entry on oeis.org
2, 5, 37, 215, 1297, 7775, 46657, 279935, 1679617, 10077695, 60466177, 362797055, 2176782337, 13060694015, 78364164097, 470184984575, 2821109907457, 16926659444735, 101559956668417, 609359740010495, 3656158440062977, 21936950640377855, 131621703842267137
Offset: 0
-
Array[6^# + (-1)^# &, 23, 0] (* or *)
LinearRecurrence[{5, 6}, {2, 5}, 23] (* or *)
CoefficientList[ Series[(5x -2)/(6x^2 + 5x -1), {x, 0, 23}], x] (* Robert G. Wilson v, Jan 01 2017 *)
-
Vec((2-5*x)/((1+x)*(1-6*x)) + O(x^30))
Showing 1-4 of 4 results.
Comments