cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081341 Expansion of exp(3*x)*cosh(3*x).

Original entry on oeis.org

1, 3, 18, 108, 648, 3888, 23328, 139968, 839808, 5038848, 30233088, 181398528, 1088391168, 6530347008, 39182082048, 235092492288, 1410554953728, 8463329722368, 50779978334208, 304679870005248, 1828079220031488, 10968475320188928, 65810851921133568
Offset: 0

Views

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A081340. 3rd binomial transform of (1,0,9,0,81,0,729,0,...).
For m > 1, n > 0, A166469(A002110(m)*a(n)) = (n+1)*A000045(m+1). For n > 0, A166469(a(n)) = 2n. - Matthew Vandermast, Nov 05 2009
Number of compositions of even natural numbers in n parts <= 5. - Adi Dani, May 29 2011

Examples

			From _Adi Dani_, May 29 2011: (Start)
a(2)=18: there are 18 compositions of even natural numbers into 2 parts <= 5:
  for 0: (0,0);
  for 2: (0,2),(2,0),(1,1);
  for 4: (0,4),(4,0),(1,3),(3,1),(2,2);
  for 6: (1,5),(5,1),(2,4),(4,2),(3,3);
  for 8: (3,5),(5,3),(4,4);
  for 10: (5,5).  (End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(3^j*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2017
  • Mathematica
    Table[Ceiling[1/2(6^n)], {n, 0, 25}]
    CoefficientList[Series[-(-1 + 3 x)/(1 - 6 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
    Join[{1},NestList[6#&,3,30]] (* Harvey P. Dale, May 25 2019 *)
  • PARI
    x='x+O('x^66); /* that many terms */
    Vec((1-3*x)/(1-6*x)) /* show terms */ /* Joerg Arndt, May 29 2011 */

Formula

a(0)=1, a(n) = 6^n/2, n > 0.
G.f.: (1-3*x)/(1-6*x).
E.g.f.: exp(3*x)*cosh(3*x).
a(n) = A000244(n)*A011782(n). - Philippe Deléham, Dec 01 2008
a(n) = ((3+sqrt(9))^n + (3-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = Sum_{k=0..n} A134309(n,k)*3^k = Sum_{k=0..n} A055372(n,k)*2^k. - Philippe Deléham, Feb 04 2012
From Sergei N. Gladkovskii, Jul 19 2012: (Start)
a(n) = ((8*n-4)*a(n-1) - 12*(n-2)*a(n-2))/n, a(0)=1, a(1)=3.
E.g.f. (exp(6*x) + 1)/2 = 1 + 3*x/(G(0) - 6*x) where G(k) = 6*x + 1 + k - 6*x*(k+1)/G(k+1) (continued fraction, Euler's 1st kind, 1-step). (End)
"INVERT" transform of A000244. - Alois P. Heinz, Sep 22 2017

Extensions

Typo in A-number fixed by Klaus Brockhaus, Apr 04 2010

A201730 Triangle T(n,k), read by rows, given by (2,1/2,3/2,0,0,0,0,0,0,0,...) DELTA (0,1/2,-1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 14, 6, 0, 0, 41, 26, 1, 0, 0, 122, 100, 10, 0, 0, 0, 365, 363, 63, 1, 0, 0, 0, 1094, 1274, 322, 14, 0, 0, 0, 0, 3281, 4372, 1462, 116, 1, 0, 0, 0, 0, 9842, 14760, 6156, 744, 18, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2011

Keywords

Comments

Riordan array ((1-2x)/(1-4x+3x^2),x^2/(1-4x+3x^2)).
A007318*A201701 as lower triangular matrices.

Examples

			Triangle begins:
1
2, 0
5, 1, 0
14, 6, 0, 0
41, 26, 1, 0, 0
122, 100, 10, 0, 0, 0
365, 363, 63, 1, 0, 0, 0
		

Crossrefs

Cf. A007051 (1st column), A261064 (2nd column).

Programs

  • Maple
    A201730 := proc(n,k)
        (1-2*x)/(1-4*x+(3-y)*x^2) ;
        coeftayl(%,y=0,k) ;
        coeftayl(%,x=0,n) ;
    end proc:
    seq(seq(A201730(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
  • Mathematica
    m = 13;
    (* DELTA is defined in A084938 *)
    DELTA[Join[{2, 1/2, 3/2}, Table[0, {m}]], Join[{0, 1/2, -1/2}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)

Formula

G.f.: (1-2x)/(1-4x+(3-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A139011(n), A000079(n), A007051(n), A006012(n), A001075(n), A081294(n), A001077(n), A084059(n), A108851(n), A084128(n), A081340(n), A084132(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k, k>+0} T(n+k,k) = A081704(n) .
T(n,k) = 3*T(n-1,k)+ Sum_{j>0} T(n-1-j,k-1).
T(n,k) = 4*T(n-1,k)+ T(n-2,k-1) - 3*T(n-2,k) with T(0,0)=1, T(1,0)= 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if n

A003665 a(n) = 2^(n-1)*( 2^n + (-1)^n ).

Original entry on oeis.org

1, 1, 10, 28, 136, 496, 2080, 8128, 32896, 130816, 524800, 2096128, 8390656, 33550336, 134225920, 536854528, 2147516416, 8589869056, 34359869440, 137438691328, 549756338176, 2199022206976, 8796095119360, 35184367894528, 140737496743936, 562949936644096, 2251799847239680
Offset: 0

Keywords

Comments

Binomial transform of expansion of cosh(3*x), the aerated version of A001019, 1,0,9,0,81,0,729,... - Paul Barry, Apr 05 2003
Alternatively: start with the fraction 1/1, take the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 9 times the bottom to get the new top. The limit of the sequence of fractions used to generate this sequence is sqrt(9). - Cino Hilliard, Sep 25 2005
This sequence also gives the number of ordered pairs of subsets (A, B) of {1, 2, ..., n} such that |A u B| is even. (Here "u" stands for the set-theoretic union.) The special case n = 13 can be found as in CRUX Problem 3257. - Walther Janous (walther.janous(AT)tirol.com), Mar 01 2008
For n > 0, a(n) is term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 3,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 9 types of other natural numbers. - Milan Janjic, Aug 13 2010
a(n) = ((1+3)^n+(1-3)^n)/2. In general, if b(0),b(1),... is the k-th binomial transform of the sequence ((3^n+(-3)^n)/2), then b(n) = ((k+3)^n+(k-3)^n)/2. More generally, if b(0),b(1),... is the k-th binomial transform of the sequence ((m^n+(-m)^n)/2), then b(n) = ((k+m)^n+(k-m)^n)/2. See A034494, A081340-A081342, A034659. - Charlie Marion, Jun 25 2011
Pisano period lengths: 1, 1, 1, 1, 4, 1, 6, 1, 1, 4, 5, 1, 12, 6, 4, 1, 8, 1, 9, 4, ... - R. J. Mathar, Aug 10 2012
Starting with offset 1 the sequence is the INVERT transform of (1, 9, 9, 9, ...). - Gary W. Adamson, Aug 06 2016

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
  • M. Gardner, Riddles of Sphinx, M.A.A., 1987, p. 145.

Programs

  • GAP
    List([0..30], n-> 2^(n-1)*(2^n +(-1)^n)); # G. C. Greubel, Aug 02 2019
  • Magma
    [2^(n-1)*( 2^n + (-1)^n ): n in [0..30]]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A003665:=n->2^(n-1)*( 2^n + (-1)^n ): seq(A003665(n), n=0..30); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    CoefficientList[Series[(1+8x)/(1-2x-8x^2), {x,0,30}], x] (* or *)
    LinearRecurrence[{2,8}, {1,1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=2^(n-1)*( 2^n + (-1)^n );
    
  • Sage
    [2^(n-1)*(2^n +(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 02 2019
    

Formula

From Paul Barry, Mar 01 2003: (Start)
a(n) = 2*a(n-1) + 8*a(n-2), a(0)=a(1)=1.
a(n) = (4^n + (-2)^n)/2.
G.f.: (1-x)/((1+2*x)*(1-4*x)). (End)
From Paul Barry, Apr 05 2003: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*9^k.
E.g.f. exp(x)*cosh(3*x). (End)
a(n) = (A078008(n) + A001045(n+1))*2^(n-1) = A014551(n)*2^(n-1). - Paul Barry, Feb 12 2004
Given a(0)=1, b(0)=1 then for i=1, 2, ..., a(i)/b(i) = (a(i-1) + 9*b(i-1)) / (a(i-1) + b(i-1)). - Cino Hilliard, Sep 25 2005
a(n) = Sum_{k=0..n} A098158(n,k)*9^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = ((1+sqrt(9))^n + (1-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
If p[1]=1, and p[i]=9, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(9*k-1)/(x*(9*k+8) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013

Extensions

Entry revised by N. J. A. Sloane, Nov 22 2006

A087404 a(n) = 4*a(n-1) + 5*a(n-2) for n > 1, with a(0) = 2 and a(1) = 4.

Original entry on oeis.org

2, 4, 26, 124, 626, 3124, 15626, 78124, 390626, 1953124, 9765626, 48828124, 244140626, 1220703124, 6103515626, 30517578124, 152587890626, 762939453124, 3814697265626, 19073486328124, 95367431640626, 476837158203124, 2384185791015626, 11920928955078124, 59604644775390626
Offset: 0

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 01 2003

Keywords

Comments

Let F(x) = Product_{n>=0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number 1 + F(-1/5) = 2.24761 97788 60361 46849 ... = 2 + 1/(4 + 1/(26 + 1/(124 + 1/(626 + ...)))). See A111317. - Peter Bala, Dec 26 2012

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 - 4x)/(1 - 4x - 5x^2), {x, 0, 25}], x]
    LinearRecurrence[{4,5},{2,4},30] (* Harvey P. Dale, May 13 2022 *)
  • Sage
    [lucas_number2(n,4,-5) for n in range(0, 22)] # Zerinvary Lajos, May 14 2009

Formula

G.f.: (2 - 4*x)/(1 - 4*x - 5*x^2).
a(n) = 5^n + (-1)^n.
From Elmo R. Oliveira, Aug 23 2024: (Start)
E.g.f.: exp(-x)*(exp(6*x) + 1).
a(n) = 2*A081340(n). (End)

Extensions

a(22)-a(24) from Elmo R. Oliveira, Aug 23 2024
Showing 1-4 of 4 results.