cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A000079 Powers of 2: a(n) = 2^n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Keywords

Comments

2^0 = 1 is the only odd power of 2.
Number of subsets of an n-set.
There are 2^(n-1) compositions (ordered partitions) of n (see for example Riordan). This is the unlabeled analog of the preferential labelings sequence A000670.
This is also the number of weakly unimodal permutations of 1..n + 1, that is, permutations with exactly one local maximum. E.g., a(4) = 16: 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their reversals. - Jon Perry, Jul 27 2003 [Proof: see next line! See also A087783.]
Proof: n must appear somewhere and there are 2^(n-1) possible choices for the subset that precedes it. These must appear in increasing order and the rest must follow n in decreasing order. QED. - N. J. A. Sloane, Oct 26 2003
a(n+1) is the smallest number that is not the sum of any number of (distinct) earlier terms.
Same as Pisot sequences E(1, 2), L(1, 2), P(1, 2), T(1, 2). See A008776 for definitions of Pisot sequences.
With initial 1 omitted, same as Pisot sequences E(2, 4), L(2, 4), P(2, 4), T(2, 4). - David W. Wilson
Not the sum of two or more consecutive numbers. - Lekraj Beedassy, May 14 2004
Least deficient or near-perfect numbers (i.e., n such that sigma(n) = A000203(n) = 2n - 1). - Lekraj Beedassy, Jun 03 2004. [Comment from Max Alekseyev, Jan 26 2005: All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2.]
Almost-perfect numbers referred to as least deficient or slightly defective (Singh 1997) numbers. Does "near-perfect numbers" refer to both almost-perfect numbers (sigma(n) = 2n - 1) and quasi-perfect numbers (sigma(n) = 2n + 1)? There are no known quasi-perfect or least abundant or slightly excessive (Singh 1997) numbers.
The sum of the numbers in the n-th row of Pascal's triangle; the sum of the coefficients of x in the expansion of (x+1)^n.
The Collatz conjecture (the hailstone sequence will eventually reach the number 1, regardless of which positive integer is chosen initially) may be restated as (the hailstone sequence will eventually reach a power of 2, regardless of which positive integer is chosen initially).
The only hailstone sequence which doesn't rebound (except "on the ground"). - Alexandre Wajnberg, Jan 29 2005
With p(n) as the number of integer partitions of n, p(i) is the number of parts of the i-th partition of n, d(i) is the number of different parts of the i-th partition of n, m(i,j) is the multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i = 1..p(n)} (p(i)! / (Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of binary relations on an n-element set that are both symmetric and antisymmetric. Also the number of binary relations on an n-element set that are symmetric, antisymmetric and transitive.
The first differences are the sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
a(n) is the largest number with shortest addition chain involving n additions. - David W. Wilson, Apr 23 2006
Beginning with a(1) = 0, numbers not equal to the sum of previous distinct natural numbers. - Giovanni Teofilatto, Aug 06 2006
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n} -> {1, 2} such that for a fixed x in {1, 2, ..., n} and a fixed y in {1, 2} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
Let P(A) be the power set of an n-element set A. Then a(n) is the number of pairs of elements {x,y} of P(A) for which x = y. - Ross La Haye, Jan 09 2008
a(n) is the number of permutations on [n+1] such that every initial segment is an interval of integers. Example: a(3) counts 1234, 2134, 2314, 2341, 3214, 3241, 3421, 4321. The map "p -> ascents of p" is a bijection from these permutations to subsets of [n]. An ascent of a permutation p is a position i such that p(i) < p(i+1). The permutations shown map to 123, 23, 13, 12, 3, 2, 1 and the empty set respectively. - David Callan, Jul 25 2008
2^(n-1) is the largest number having n divisors (in the sense of A077569); A005179(n) is the smallest. - T. D. Noe, Sep 02 2008
a(n) appears to match the number of divisors of the modified primorials (excluding 2, 3 and 5). Very limited range examined, PARI example shown. - Bill McEachen, Oct 29 2008
Successive k such that phi(k)/k = 1/2, where phi is Euler's totient function. - Artur Jasinski, Nov 07 2008
A classical transform consists (for general a(n)) in swapping a(2n) and a(2n+1); examples for Jacobsthal A001045 and successive differences: A092808, A094359, A140505. a(n) = A000079 leads to 2, 1, 8, 4, 32, 16, ... = A135520. - Paul Curtz, Jan 05 2009
This is also the (L)-sieve transform of {2, 4, 6, 8, ..., 2n, ...} = A005843. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 23 2009
a(n) = a(n-1)-th even natural number (A005843) for n > 1. - Jaroslav Krizek, Apr 25 2009
For n >= 0, a(n) is the number of leaves in a complete binary tree of height n. For n > 0, a(n) is the number of nodes in an n-cube. - K.V.Iyer, May 04 2009
Permutations of n+1 elements where no element is more than one position right of its original place. For example, there are 4 such permutations of three elements: 123, 132, 213, and 312. The 8 such permutations of four elements are 1234, 1243, 1324, 1423, 2134, 2143, 3124, and 4123. - Joerg Arndt, Jun 24 2009
Catalan transform of A099087. - R. J. Mathar, Jun 29 2009
a(n) written in base 2: 1,10,100,1000,10000,..., i.e., (n+1) times 1, n times 0 (A011557(n)). - Jaroslav Krizek, Aug 02 2009
Or, phi(n) is equal to the number of perfect partitions of n. - Juri-Stepan Gerasimov, Oct 10 2009
These are the 2-smooth numbers, positive integers with no prime factors greater than 2. - Michael B. Porter, Oct 04 2009
A064614(a(n)) = A000244(n) and A064614(m) < A000244(n) for m < a(n). - Reinhard Zumkeller, Feb 08 2010
a(n) is the largest number m such that the number of steps of iterations of {r - (largest divisor d < r)} needed to reach 1 starting at r = m is equal to n. Example (a(5) = 32): 32 - 16 = 16; 16 - 8 = 8; 8 - 4 = 4; 4 - 2 = 2; 2 - 1 = 1; number 32 has 5 steps and is the largest such number. See A105017, A064097, A175125. - Jaroslav Krizek, Feb 15 2010
a(n) is the smallest proper multiple of a(n-1). - Dominick Cancilla, Aug 09 2010
The powers-of-2 triangle T(n, k), n >= 0 and 0 <= k <= n, begins with: {1}; {2, 4}; {8, 16, 32}; {64, 128, 256, 512}; ... . The first left hand diagonal T(n, 0) = A006125(n + 1), the first right hand diagonal T(n, n) = A036442(n + 1) and the center diagonal T(2*n, n) = A053765(n + 1). Some triangle sums, see A180662, are: Row1(n) = A122743(n), Row2(n) = A181174(n), Fi1(n) = A181175(n), Fi2(2*n) = A181175(2*n) and Fi2(2*n + 1) = 2*A181175(2*n + 1). - Johannes W. Meijer, Oct 10 2010
Records in the number of prime factors. - Juri-Stepan Gerasimov, Mar 12 2011
Row sums of A152538. - Gary W. Adamson, Dec 10 2008
A078719(a(n)) = 1; A006667(a(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 2-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Equals A001405 convolved with its right-shifted variant: (1 + 2x + 4x^2 + ...) = (1 + x + 2x^2 + 3x^3 + 6x^4 + 10x^5 + ...) * (1 + x + x^2 + 2x^3 + 3x^4 + 6x^5 + ...). - Gary W. Adamson, Nov 23 2011
The number of odd-sized subsets of an n+1-set. For example, there are 2^3 odd-sized subsets of {1, 2, 3, 4}, namely {1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. Also, note that 2^n = Sum_{k=1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
a(n) is the number of 1's in any row of Pascal's triangle (mod 2) whose row number has exactly n 1's in its binary expansion (see A007318 and A047999). (The result of putting together A001316 and A000120.) - Marcus Jaiclin, Jan 31 2012
A204455(k) = 1 if and only if k is in this sequence. - Wolfdieter Lang, Feb 04 2012
For n>=1 apparently the number of distinct finite languages over a unary alphabet, whose minimum regular expression has alphabetic width n (verified up to n=17), see the Gruber/Lee/Shallit link. - Hermann Gruber, May 09 2012
First differences of A000225. - Omar E. Pol, Feb 19 2013
This is the lexicographically earliest sequence which contains no arithmetic progression of length 3. - Daniel E. Frohardt, Apr 03 2013
a(n-2) is the number of bipartitions of {1..n} (i.e., set partitions into two parts) such that 1 and 2 are not in the same subset. - Jon Perry, May 19 2013
Numbers n such that the n-th cyclotomic polynomial has a root mod 2; numbers n such that the n-th cyclotomic polynomial has an even number of odd coefficients. - Eric M. Schmidt, Jul 31 2013
More is known now about non-power-of-2 "Almost Perfect Numbers" as described in Dagal. - Jonathan Vos Post, Sep 01 2013
Number of symmetric Ferrers diagrams that fit into an n X n box. - Graham H. Hawkes, Oct 18 2013
Numbers n such that sigma(2n) = 2n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
a(1), ..., a(floor(n/2)) are all values of permanent on set of square (0,1)-matrices of order n>=2 with row and column sums 2. - Vladimir Shevelev, Nov 26 2013
Numbers whose base-2 expansion has exactly one bit set to 1, and thus has base-2 sum of digits equal to one. - Stanislav Sykora, Nov 29 2013
A072219(a(n)) = 1. - Reinhard Zumkeller, Feb 20 2014
a(n) is the largest number k such that (k^n-2)/(k-2) is an integer (for n > 1); (k^a(n)+1)/(k+1) is never an integer (for k > 1 and n > 0). - Derek Orr, May 22 2014
If x = A083420(n), y = a(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
The mini-sequence b(n) = least number k > 0 such that 2^k ends in n identical digits is given by {1, 18, 39}. The repeating digits are {2, 4, 8} respectively. Note that these are consecutive powers of 2 (2^1, 2^2, 2^3), and these are the only powers of 2 (2^k, k > 0) that are only one digit. Further, this sequence is finite. The number of n-digit endings for a power of 2 with n or more digits id 4*5^(n-1). Thus, for b(4) to exist, one only needs to check exponents up to 4*5^3 = 500. Since b(4) does not exist, it is clear that no other number will exist. - Derek Orr, Jun 14 2014
The least number k > 0 such that 2^k ends in n consecutive decreasing digits is a 3-number sequence given by {1, 5, 25}. The consecutive decreasing digits are {2, 32, 432}. There are 100 different 3-digit endings for 2^k. There are no k-values such that 2^k ends in '987', '876', '765', '654', '543', '321', or '210'. The k-values for which 2^k ends in '432' are given by 25 mod 100. For k = 25 + 100*x, the digit immediately before the run of '432' is {4, 6, 8, 0, 2, 4, 6, 8, 0, 2, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus, we see the digit before '432' will never be a 5. So, this sequence is complete. - Derek Orr, Jul 03 2014
a(n) is the number of permutations of length n avoiding both 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Numbers n such that sigma(n) = sigma(2n) - phi(4n). - Farideh Firoozbakht, Aug 14 2014
This is a B_2 sequence: for i < j, differences a(j) - a(i) are all distinct. Here 2*a(n) < a(n+1) + 1, so a(n) - a(0) < a(n+1) - a(n). - Thomas Ordowski, Sep 23 2014
a(n) counts n-walks (closed) on the graph G(1-vertex; 1-loop, 1-loop). - David Neil McGrath, Dec 11 2014
a(n-1) counts walks (closed) on the graph G(1-vertex; 1-loop, 2-loop, 3-loop, 4-loop, ...). - David Neil McGrath, Jan 01 2015
b(0) = 4; b(n+1) is the smallest number not in the sequence such that b(n+1) - Prod_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n) = a(n) for n > 2. - Derek Orr, Jan 15 2015
a(n) counts the permutations of length n+2 whose first element is 2 such that the permutation has exactly one descent. - Ran Pan, Apr 17 2015
a(0)-a(30) appear, with a(26)-a(30) in error, in tablet M 08613 (see CDLI link) from the Old Babylonian period (c. 1900-1600 BC). - Charles R Greathouse IV, Sep 03 2015
Subsequence of A028982 (the squares or twice squares sequence). - Timothy L. Tiffin, Jul 18 2016
A000120(a(n)) = 1. A000265(a(n)) = 1. A000593(a(n)) = 1. - Juri-Stepan Gerasimov, Aug 16 2016
Number of monotone maps f : [0..n] -> [0..n] which are order-increasing (i <= f(i)) and idempotent (f(f(i)) = f(i)). In other words, monads on the n-th ordinal (seen as a posetal category). Any monad f determines a subset of [0..n] that contains n, by considering its set of monad algebras = fixed points { i | f(i) = i }. Conversely, any subset S of [0..n] containing n determines a monad on [0..n], by the function i |-> min { j | i <= j, j in S }. - Noam Zeilberger, Dec 11 2016
Consider n points lying on a circle. Then for n>=2 a(n-2) gives the number of ways to connect two adjacent points with nonintersecting chords. - Anton Zakharov, Dec 31 2016
Satisfies Benford's law [Diaconis, 1977; Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Also the number of independent vertex sets and vertex covers in the n-empty graph. - Eric W. Weisstein, Sep 21 2017
Also the number of maximum cliques in the n-halved cube graph for n > 4. - Eric W. Weisstein, Dec 04 2017
Number of pairs of compositions of n corresponding to a seaweed algebra of index n-1. - Nick Mayers, Jun 25 2018
The multiplicative group of integers modulo a(n) is cyclic if and only if n = 0, 1, 2. For n >= 3, it is a product of two cyclic groups. - Jianing Song, Jun 27 2018
k^n is the determinant of n X n matrix M_(i, j) = binomial(k + i + j - 2, j) - binomial(i+j-2, j), in this case k=2. - Tony Foster III, May 12 2019
Solutions to the equation Phi(2n + 2*Phi(2n)) = 2n. - M. Farrokhi D. G., Jan 03 2020
a(n-1) is the number of subsets of {1,2,...,n} which have an element that is the size of the set. For example, for n = 4, a(3) = 8 and the subsets are {1}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}. - Enrique Navarrete, Nov 21 2020
a(n) is the number of self-inverse (n+1)-order permutations with 231-avoiding. E.g., a(3) = 8: [1234, 1243, 1324, 1432, 2134, 2143, 3214, 4321]. - Yuchun Ji, Feb 26 2021
For any fixed k > 0, a(n) is the number of ways to tile a strip of length n+1 with tiles of length 1, 2, ... k, where the tile of length k can be black or white, with the restriction that the first tile cannot be black. - Greg Dresden and Bora Bursalı, Aug 31 2023

Examples

			There are 2^3 = 8 subsets of a 3-element set {1,2,3}, namely { -, 1, 2, 3, 12, 13, 23, 123 }.
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 1016.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 73, 84.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.5 Logarithms and §8.1 Terminology, pp. 150, 264.
  • Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton University Press, Princeton, NJ. 1998, pp. 69-70.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 273.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. E. Tarakanov, Combinatorial problems on binary matrices, Combin. Analysis, MSU, 5 (1980), 4-15. (Russian)
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

This is the Hankel transform (see A001906 for the definition) of A000984, A002426, A026375, A026387, A026569, A026585, A026671 and A032351. - John W. Layman, Jul 31 2000
Euler transform of A001037, A209406 (multisets), inverse binomial transform of A000244, binomial transform of A000012.
Complement of A057716.
Boustrophedon transforms: A000734, A000752.
Range of values of A006519, A007875, A011782, A030001, A034444, A037445, A053644, and A054243.
Cf. A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (sum of 2, ..., 9 distinct powers of 2).
Cf. A090129.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Haskell
    a000079 = (2 ^)
    a000079_list = iterate (* 2) 1
    -- Reinhard Zumkeller, Jan 22 2014, Mar 05 2012, Dec 29 2011
    
  • Magma
    [2^n: n in [0..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Magma
    [n le 2 select n else 5*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Maple
    A000079 := n->2^n; [ seq(2^n,n=0..50) ];
    isA000079 := proc(n)
        local fs;
        fs := numtheory[factorset](n) ;
        if n = 1 then
            true ;
        elif nops(fs) <> 1 then
            false;
        elif op(1,fs) = 2 then
            true;
        else
            false ;
        end if;
    end proc: # R. J. Mathar, Jan 09 2017
  • Mathematica
    Table[2^n, {n, 0, 50}]
    2^Range[0, 50] (* Wesley Ivan Hurt, Jun 14 2014 *)
    LinearRecurrence[{2}, {2}, {0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
    CoefficientList[Series[1/(1 - 2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    NestList[2# &, 1, 40] (* Harvey P. Dale, Oct 07 2019 *)
  • Maxima
    A000079(n):=2^n$ makelist(A000079(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    A000079(n)=2^n \\ Edited by M. F. Hasler, Aug 27 2014
    
  • PARI
    unimodal(n)=local(x,d,um,umc); umc=0; for (c=0,n!-1, x=numtoperm(n,c); d=0; um=1; for (j=2,n,if (x[j]x[j-1] && d==1,um=0); if (um==0,break)); if (um==1,print(x)); umc+=um); umc
    
  • Python
    def a(n): return 1<Michael S. Branicky, Jul 28 2022
    
  • Python
    def is_powerof2(n) -> bool: return n and (n & (n - 1)) == 0  # Peter Luschny, Apr 10 2025
  • Scala
    (List.fill(20)(2: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, Jan 16 2020
    
  • Scheme
    (define (A000079 n) (expt 2 n)) ;; Antti Karttunen, Mar 21 2017
    

Formula

a(n) = 2^n.
a(0) = 1; a(n) = 2*a(n-1).
G.f.: 1/(1 - 2*x).
E.g.f.: exp(2*x).
a(n)= Sum_{k = 0..n} binomial(n, k).
a(n) is the number of occurrences of n in A000523. a(n) = A001045(n) + A001045(n+1). a(n) = 1 + Sum_{k = 0..(n - 1)} a(k). The Hankel transform of this sequence gives A000007 = [1, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Feb 25 2004
n such that phi(n) = n/2, for n > 1, where phi is Euler's totient (A000010). - Lekraj Beedassy, Sep 07 2004
a(n + 1) = a(n) XOR 3*a(n) where XOR is the binary exclusive OR operator. - Philippe Deléham, Jun 19 2005
a(n) = StirlingS2(n + 1, 2) + 1. - Ross La Haye, Jan 09 2008
a(n+2) = 6a(n+1) - 8a(n), n = 1, 2, 3, ... with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Aug 06 2008
a(n) = ka(n-1) + (4 - 2k)a(n-2) for any integer k and n > 1, with a(0) = 1, a(1) = 2. - Jaume Oliver Lafont, Dec 05 2008
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i <= l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(0) = 1, a(1) = 2; a(n) = a(n-1)^2/a(n-2), n >= 2. - Jaume Oliver Lafont, Sep 22 2009
a(n) = A173786(n, n)/2 = A173787(n + 1, n). - Reinhard Zumkeller, Feb 28 2010
If p[i] = i - 1 and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 02 2010
If p[i] = Fibonacci(i-2) and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n-2) = det A. - Milan Janjic, May 08 2010
The sum of reciprocals, 1/1 + 1/2 + 1/4 + 1/8 + ... + 1/(2^n) + ... = 2. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2*A001045(n) + A078008(n) = 3*A001045(n) + (-1)^n. - Paul Barry, Feb 20 2003
a(n) = A118654(n, 2).
a(n) = A140740(n+1, 1).
a(n) = A131577(n) + A011782(n) = A024495(n) + A131708(n) + A024493(n) = A000749(n) + A038503(n) + A038504(n) + A038505(n) = A139761(n) + A139748(n) + A139714(n) + A133476(n) + A139398(n). - Paul Curtz, Jul 25 2011
a(n) = row sums of A007318. - Susanne Wienand, Oct 21 2011
a(n) = Hypergeometric([-n], [], -1). - Peter Luschny, Nov 01 2011
G.f.: A(x) = B(x)/x, B(x) satisfies B(B(x)) = x/(1 - x)^2. - Vladimir Kruchinin, Nov 10 2011
a(n) = Sum_{k = 0..n} A201730(n, k)*(-1)^k. - Philippe Deléham, Dec 06 2011
2^n = Sum_{k = 1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
A209229(a(n)) = 1. - Reinhard Zumkeller, Mar 07 2012
A001227(a(n)) = 1. - Reinhard Zumkeller, May 01 2012
Sum_{n >= 1} mobius(n)/a(n) = 0.1020113348178103647430363939318... - R. J. Mathar, Aug 12 2012
E.g.f.: 1 + 2*x/(U(0) - x) where U(k) = 6*k + 1 + x^2/(6*k+3 + x^2/(6*k + 5 + x^2/U(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Dec 04 2012
a(n) = det(|s(i+2,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
a(n) = det(|ps(i+1,j)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013
G.f.: W(0), where W(k) = 1 + 2*x*(k+1)/(1 - 2*x*(k+1)/( 2*x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
a(n-1) = Sum_{t_1 + 2*t_2 + ... + n*t_n = n} multinomial(t_1 + t_2 + ... + t_n; t_1, t_2, ..., t_n). - Mircea Merca, Dec 06 2013
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A(n)=(1,1,1,...) and S(n)=(0,1,0,0,...) (where * is convolution operation). Then a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
a(n) = A000005(A002110(n)). - Ivan N. Ianakiev, May 23 2016
From Ilya Gutkovskiy, Jul 18 2016: (Start)
Exponential convolution of A000012 with themselves.
a(n) = Sum_{k=0..n} A011782(k).
Sum_{n>=0} a(n)/n! = exp(2) = A072334.
Sum_{n>=0} (-1)^n*a(n)/n! = exp(-2) = A092553. (End)
G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = A090129(x) = (1 + 2x + 2x^2 + 4x^3 + 8x^4 + ...). - Gary W. Adamson, Sep 13 2016
a(n) = A000045(n + 1) + A000045(n) + Sum_{k = 0..n - 2} A000045(k + 1)*2^(n - 2 - k). - Melvin Peralta, Dec 22 2017
a(n) = 7*A077020(n)^2 + A077021(n)^2, n>=3. - Ralf Steiner, Aug 08 2021
a(n)= n + 1 + Sum_{k=3..n+1} (2*k-5)*J(n+2-k), where Jacobsthal number J(n) = A001045(n). - Michael A. Allen, Jan 12 2022
Integral_{x=0..Pi} cos(x)^n*cos(n*x) dx = Pi/a(n) (see Nahin, pp. 69-70). - Stefano Spezia, May 17 2023

Extensions

Clarified a comment T. D. Noe, Aug 30 2009
Edited by Daniel Forgues, May 12 2010
Incorrect comment deleted by Matthew Vandermast, May 17 2014
Comment corrected to match offset by Geoffrey Critzer, Nov 28 2014

A007051 a(n) = (3^n + 1)/2.

Original entry on oeis.org

1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0

Views

Author

Keywords

Comments

Number of ordered trees with n edges and height at most 4.
Number of palindromic structures using a maximum of three different symbols. - Marks R. Nester
Number of compositions of all even natural numbers into n parts <= 2 (0 is counted as a part), see example. - Adi Dani, May 14 2011
Consider the mapping f(a/b) = (a + 2*b)/(2*a + b). Taking a = 1, b = 2 to start with, and carrying out this mapping repeatedly on each new (reduced) rational number gives the sequence 1/2, 4/5, 13/14, 40/41, ... converging to 1. The sequence contains the denominators = (3^n+1)/2. The same mapping for N, i.e., f(a/b) = (a + N*b)/(a+b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Second binomial transform of the expansion of cosh(x). - Paul Barry, Apr 05 2003
The sequence (1, 1, 2, 5, ...) = 3^n/6 + 1/2 + 0^n/3 has binomial transform A007581. - Paul Barry, Jul 20 2003
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2n+2, s(0) = 1, s(2n+2) = 1. - Herbert Kociemba, Jun 10 2004
Density of regular language L over {1,2,3}^* (i.e., number of strings of length n in L) described by regular expression 11*+11*2(1+2)*+11*2(1+2)*3(1+2+3)*. - Nelma Moreira, Oct 10 2004
Sums of rows of the triangle in A119258. - Reinhard Zumkeller, May 11 2006
Number of n-words from the alphabet A = {a,b,c} which contain an even number of a's. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x = y. - Ross La Haye, Jan 10 2008
a(n+1) gives the number of primitive periodic multiplex juggling sequences of length n with base state <2>. - Steve Butler, Jan 21 2008
a(n) is also the number of idempotent order-preserving and order-decreasing partial transformations (of an n-chain). - Abdullahi Umar, Oct 02 2008
Equals row sums of triangle A147292. - Gary W. Adamson, Nov 05 2008
Equals leftmost column of A071919^3. - Gary W. Adamson, Apr 13 2009
A010888(a(n))=5 for n >= 2, that is, the digital root of the terms >= 5 equals 5. - Parthasarathy Nambi, Jun 03 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,2). - Milan Janjic, Jan 27 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n-1)*charpoly(A,3). - Milan Janjic, Feb 21 2010
It appears that if s(n) is a rational sequence of the form s(1)=2, s(n)= (2*s(n-1)+1)/(s(n-1)+2), n>1 then s(n)=a(n)/(a(n-1)-1).
Form an array with m(1,n)=1 and m(i,j) = Sum_{k=1..i-1} m(k,j) + Sum_{k=1..j-1} m(i,k), which is the sum of the terms to the left of m(i,j) plus the sum above m(i,j). The sum of the terms in antidiagonal(n-1) = a(n). - J. M. Bergot, Jul 16 2013
From Peter Bala, Oct 29 2013: (Start)
An Engel expansion of 3 to the base b := 3/2 as defined in A181565, with the associated series expansion 3 = b + b^2/2 + b^3/(2*5) + b^4/(2*5*14) + .... Cf. A034472.
More generally, for a positive integer n >= 3, the sequence [1, n - 1, n^2 - n - 1, ..., ( (n - 2)*n^k + 1 )/(n - 1), ...] is an Engel expansion of n/(n - 2) to the base n/(n - 1). Cases include A007583 (n = 4), A083065 (n = 5) and A083066 (n = 6). (End)
Diagonal elements (and one more than antidiagonal elements) of the matrix A^n where A=(2,1;1,2). - David Neil McGrath, Aug 17 2014
From M. Sinan Kul, Sep 07 2016: (Start)
a(n) is equal to the number of integer solutions to the following equation when x is equal to the product of n distinct primes: 1/x = 1/y + 1/z where 0 < x < y <= z.
If z = k*y where k is a fraction >= 1 then the solutions can be given as: y = ((k+1)/k)*x and z = (k+1)*x.
Here k can be equal to any divisor of x or to the ratio of two divisors.
For example for x = 2*3*5 = 30 (product of three distinct primes), k would have the following 14 values: 1, 6/5, 3/2, 5/3, 2, 5/2, 3, 10/3, 5, 6, 15/2, 10, 15, 30.
As an example for k = 10/3, we would have y=39, z=130 and 1/39 + 1/130 = 1/30.
Here finding the number of fractions would be equivalent to distributing n balls (distinct primes) to two bins (numerator and denominator) with no empty bins which can be found using Stirling numbers of the second kind. So another definition for a(n) is: a(n) = 2^n + Sum_{i=2..n} Stirling2(i,2)*binomial(n,i).
(End)
a(n+1) is the smallest i for which the Catalan number C(i) (see A000108) is divisible by 3^n for n > 0. This follows from the rule given by Franklin T. Adams-Watters for determining the multiplicity with which a prime divides C(n). We need to find the smallest number in base 3 to achieve a given count. Applied to prime 3, 1 is the smallest digit that counts but requires to be followed by 2 which cannot be at the end to count. Therefore the number in base 3 of the form 1{n-1 times}20 = (3^(n+1) + 1)/2 + 1 = a(n+1)+1 is the smallest number to achieve count n which implies the claim. - Peter Schorn, Mar 06 2020
Let A be a Toeplitz matrix of order n, defined by: A[i,j]=1, if ij; A[i,i]=2. Then, for n>=1, a(n) = det A. - Dmitry Efimov, Oct 28 2021
a(n) is the least number k such that A065363(k) = -(n-1), for n > 0. - Amiram Eldar, Sep 03 2022

Examples

			From _Adi Dani_, May 14 2011: (Start)
a(3)=14 because all compositions of even natural numbers into 3 parts <=2 are
for 0: (0,0,0)
for 2: (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0)
for 4: (0,2,2), (2,0.2), (2,2,0), (1,1,2), (1,2,1), (2,1,1)
for 6: (2,2,2).
(End)
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 47.
  • Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 60.
  • P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 1.
Binomial transform of Chebyshev coefficients A011782. - Paul Barry, Mar 16 2003
From Paul Barry, Mar 16 2003: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1, a(0)=1, a(1)=2.
G.f.: (1 - 2*x)/((1 - x)*(1 - 3*x)). (End)
E.g.f.: exp(2*x)*cosh(x). - Paul Barry, Apr 05 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k). - Paul Barry, May 08 2003
This sequence is also the partial sums of the first 3 Stirling numbers of second kind: a(n) = S(n+1, 1) + S(n+1, 2) + S(n+1, 3) for n >= 0; alternatively it is the number of partitions of [n+1] into 3 or fewer parts. - Mike Zabrocki, Jun 21 2004
For c=3, a(n) = (c^n)/c! + Sum_{k=1..c-2}((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))) or = Sum_{k=1..c} g(k, c)*k^n where g(1, 1) = 1, g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! for c > 1, and g(k, c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
The i-th term of the sequence is the entry (1, 1) in the i-th power of the 2 X 2 matrix M = ((2, 1), (1, 2)). - Simone Severini, Oct 15 2005
If p[i]=fibonacci(2i-3) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
INVERT transform of A001519: [1, 1, 2, 5, 13, 34, ...]. - Gary W. Adamson, Jun 13 2011
a(n) = M^n*[1,1,1,0,0,0,...], leftmost column term; where M = an infinite bidiagonal matrix with all 1's in the superdiagonal and (1,2,3,...) in the main diagonal and the rest zeros. - Gary W. Adamson, Jun 23 2011
a(n) = M^n*[1,1,1,0,0,0,...], top entry term; where M is an infinite bidiagonal matrix with all 1's in the superdiagonal, (1,2,3,...) as the main diagonal, and the rest zeros. - Gary W. Adamson, Jun 24 2011
a(n) = A201730(n,0). - Philippe Deléham, Dec 05 2011
a(n) = A006342(n) + A006342(n-1). - Yuchun Ji, Sep 19 2018
From Dmitry Efimov, Oct 29 2021: (Start)
a(2*m+1) = Product_{k=-m..m} (2+i*tan(Pi*k/(2*m+1))),
a(2*m) = Product_{k=-m..m-1} (2+i*tan(Pi*(2*k+1)/(4*m))),
where i is the imaginary unit. (End)

A001075 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).

Original entry on oeis.org

1, 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, 978122, 3650401, 13623482, 50843527, 189750626, 708158977, 2642885282, 9863382151, 36810643322, 137379191137, 512706121226, 1913445293767, 7141075053842, 26650854921601, 99462344632562, 371198523608647
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's T(n,x) polynomials evaluated at x=2.
x = 2^n - 1 is prime if and only if x divides a(2^(n-2)).
Any k in the sequence is succeeded by 2*k + sqrt{3*(k^2 - 1)}. - Lekraj Beedassy, Jun 28 2002
For all elements x of the sequence, 12*x^2 - 12 is a square. Lim_{n -> infinity} a(n)/a(n-1) = 2 + sqrt(3) = (4 + sqrt(12))/2 which preserves the kinship with the equation "12*x^2 - 12 is a square" where the initial "12" ends up appearing as a square root. - Gregory V. Richardson, Oct 10 2002
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 3*y^2 = 1; the corresponding values of y are in A001353. The solution ratios a(n)/A001353(n) are obtained as convergents of the continued fraction expansion of sqrt(3): either as successive convergents of [2;-4] or as odd convergents of [1;1,2]. - Lekraj Beedassy, Sep 19 2003 [edited by Jon E. Schoenfield, May 04 2014]
a(n) is half the central value in a list of three consecutive integers, the lengths of the sides of a triangle with integer sides and area. - Eugene McDonnell (eemcd(AT)mac.com), Oct 19 2003
a(3+6*k) - 1 and a(3+6*k) + 1 are consecutive odd powerful numbers. See A076445. - T. D. Noe, May 04 2006
The intermediate convergents to 3^(1/2), beginning with 3/2, 12/7, 45/26, 168/97, comprise a strictly increasing sequence; essentially, numerators=A005320, denominators=A001075. - Clark Kimberling, Aug 27 2008
The upper principal convergents to 3^(1/2), beginning with 2/1, 7/4, 26/15, 97/56, comprise a strictly decreasing sequence; numerators=A001075, denominators=A001353. - Clark Kimberling, Aug 27 2008
a(n+1) is the Hankel transform of A000108(n) + A000984(n) = (n+2)*Catalan(n). - Paul Barry, Aug 11 2009
Also, numbers such that floor(a(n)^2/3) is a square: base 3 analog of A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001541. - M. F. Hasler, Jan 15 2012
Pisano period lengths: 1, 2, 2, 4, 3, 2, 8, 4, 6, 6, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - R. J. Mathar, Aug 10 2012
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 3 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 48 = 0. - Colin Barker, Feb 10 2014
A triangle with row sums generating the sequence can be constructed by taking the production matrix M. Take powers of M, extracting the top rows.
M =
1, 1, 0, 0, 0, 0, ...
2, 0, 3, 0, 0, 0, ...
2, 0, 0, 3, 0, 0, ...
2, 0, 0, 0, 3, 0, ...
2, 0, 0, 0, 0, 3, ...
...
The triangle generated from M is:
1,
1, 1,
3, 1, 3,
11, 3, 3, 9,
41, 11, 9, 9, 27,
...
The left border is A001835 and row sums are (1, 2, 7, 26, 97, ...). - Gary W. Adamson, Jul 25 2016
Even-indexed terms are odd while odd-indexed terms are even. Indeed, a(2*n) = 2*(a(n))^2 - 1 and a(2*n+1) = 2*a(n)*a(n+1) - 2. - Timothy L. Tiffin, Oct 11 2016
For each n, a(0) divides a(n), a(1) divides a(2n+1), a(2) divides a(4*n+2), a(3) divides a(6*n+3), a(4) divides a(8*n+4), a(5) divides a(10n+5), and so on. Thus, a(k) divides a((2*n+1)*k) for each k > 0 and n >= 0. A proof of this can be found in Bhargava-Kedlaya-Ng's first solution to Problem A2 of the 76th Putnam Mathematical Competition. Links to the exam and its solutions can be found below. - Timothy L. Tiffin, Oct 12 2016
From Timothy L. Tiffin, Oct 21 2016: (Start)
If any term a(n) is a prime number, then its index n will be a power of 2. This is a consequence of the results given in the previous two comments. See A277434 for those prime terms.
a(2n) == 1 (mod 6) and a(2*n+1) == 2 (mod 6). Consequently, each odd prime factor of a(n) will be congruent to 1 modulo 6 and, thus, found in A002476.
a(n) == 1 (mod 10) if n == 0 (mod 6), a(n) == 2 (mod 10) if n == {1,-1} (mod 6), a(n) == 7 (mod 10) if n == {2,-2} (mod 6), and a(n) == 6 (mod 10) if n == 3 (mod 6). So, the rightmost digits of a(n) form a repeating cycle of length 6: 1, 2, 7, 6, 7, 2. (End)
a(A298211(n)) = A002350(3*n^2). - A.H.M. Smeets, Jan 25 2018
(2 + sqrt(3))^n = a(n) + A001353(n)*sqrt(3), n >= 0; integers in the quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 16 2018
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001834 and with any member of A001835. - René Gy, Feb 26 2018
Positive numbers k such that 3*(k-1)*(k+1) is a square. - Davide Rotondo, Oct 25 2020
a(n)*a(n+1)-1 = a(2*n+1)/2 = A001570(n) divides both a(n)^6+1 and a(n+1)^6+1. In other words, for k = a(2*n+1)/2, (k+1)^6 has divisors congruent to -1 modulo k (cf. A350916). - Max Alekseyev, Jan 23 2022

Examples

			2^6 - 1 = 63 does not divide a(2^4) = 708158977, therefore 63 is composite. 2^5 - 1 = 31 divides a(2^3) = 18817, therefore 31 is prime.
G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 97*x^4 + 362*x^5 + 1351*x^6 + 5042*x^7 + ...
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • Eugene McDonnell, "Heron's Rule and Integer-Area Triangles", Vector 12.3 (January 1996) pp. 133-142.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.

Crossrefs

Programs

  • Haskell
    a001075 n = a001075_list !! n
    a001075_list =
       1 : 2 : zipWith (-) (map (4 *) $ tail a001075_list) a001075_list
    -- Reinhard Zumkeller, Aug 11 2011
    
  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001075 := proc(n)
        orthopoly[T](n,2) ;
    end proc:
    seq(A001075(n),n=0..30) ; # R. J. Mathar, Apr 14 2018
  • Mathematica
    Table[ Ceiling[(1/2)*(2 + Sqrt[3])^n], {n, 0, 24}]
    CoefficientList[Series[(1-2*x) / (1-4*x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Dec 21 2011, after Simon Plouffe *)
    LinearRecurrence[{4,-1},{1,2},30] (* Harvey P. Dale, Aug 22 2015 *)
    Round@Table[LucasL[2n, Sqrt[2]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    ChebyshevT[Range[0, 20], 2] (* Eric W. Weisstein, May 26 2017 *)
    a[ n_] := LucasL[2*n, x]/2 /. x->Sqrt[2]; (* Michael Somos, Sep 05 2022 *)
  • PARI
    {a(n) = subst(poltchebi(abs(n)), x, 2)};
    
  • PARI
    {a(n) = real((2 + quadgen(12))^abs(n))};
    
  • PARI
    {a(n) = polsym(1 - 4*x + x^2, abs(n))[1 + abs(n)]/2};
    
  • PARI
    a(n)=polchebyshev(n,1,2) \\ Charles R Greathouse IV, Nov 07 2016
    
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x)/(1-4*x+x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • SageMath
    [lucas_number2(n,4,1)/2 for n in range(0, 25)] # Zerinvary Lajos, May 14 2009
    
  • SageMath
    def a(n):
        Q = QuadraticField(3, 't')
        u = Q.units()[0]
        return (u^n).lift().coeffs()[0]  # Ralf Stephan, Jun 19 2014
    

Formula

G.f.: (1 - 2*x)/(1 - 4*x + x^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(2*x)*cosh(sqrt(3)*x).
a(n) = 4*a(n-1) - a(n-2) = a(-n).
a(n) = (S(n, 4) - S(n-2, 4))/2 = T(n, 2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U, resp. T, are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 4) = A001353(n), n >= 0. See A049310 and A053120.
a(n) = A001353(n+2) - 2*A001353(n+1).
a(n) = sqrt(1 + 3*A001353(n)) (cf. Richardson comment, Oct 10 2002).
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n, 2*k)*3^k = 2^(-n)*Sum_{k>=0} A086645(n, k)*3^k. - Philippe Deléham, Mar 01 2004
a(n) = ((2 + sqrt(3))^n + (2 - sqrt(3))^n)/2; a(n) = ceiling((1/2)*(2 + sqrt(3))^(n)).
a(n) = cosh(n * log(2 + sqrt(3))).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k)*3^k. - Paul Barry, May 08 2003
a(n+2) = 2*a(n+1) + 3*Sum_{k>=0} a(n-k)*2^k. - Philippe Deléham, Mar 03 2004
a(n) = 2*a(n-1) + 3*A001353(n-1). - Lekraj Beedassy, Jul 21 2006
a(n) = left term of M^n * [1,0] where M = the 2 X 2 matrix [2,3; 1,2]. Right term = A001353(n). Example: a(4) = 97 since M^4 * [1,0] = [A001075(4), A001353(4)] = [97, 56]. - Gary W. Adamson, Dec 27 2006
Binomial transform of A026150: (1, 1, 4, 10, 28, 76, ...). - Gary W. Adamson, Nov 23 2007
First differences of A001571. - N. J. A. Sloane, Nov 03 2009
Sequence satisfies -3 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(n) = Sum_{k=0..n} A201730(n,k)*2^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k - 4)/(x*(3*k - 1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
a(n) = Sum_{k=0..n} A238731(n,k). - Philippe Deléham, Mar 05 2014
a(n) = (-1)^n*(A125905(n) + 2*A125905(n-1)), n > 0. - Franck Maminirina Ramaharo, Nov 11 2018
a(n) = (tan(Pi/12)^n + tan(5*Pi/12)^n)/2. - Greg Dresden, Oct 01 2020
From Peter Bala, Aug 17 2022: (Start)
a(n) = (1/2)^n * [x^n] ( 4*x + sqrt(1 + 12*x^2) )^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 8*x + 4*x^2) is the g.f. of A069835.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k.
Sum_{n >= 1} 1/(a(n) - (3/2)/a(n)) = 1.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + (1/2)/a(n)) = 1/3.
Sum_{n >= 1} 1/(a(n)^2 - 3/2) = 1 - 1/sqrt(3). (End)
a(n) = binomial(2*n, n) + 2*Sum_{k > 0} binomial(2*n, n+2*k)*cos(k*Pi/3). - Greg Dresden, Oct 11 2022
2*a(n) + 2^n = 3*Sum_{k=-n..n} (-1)^k*binomial(2*n, n+6*k). - Greg Dresden, Feb 07 2023

Extensions

More terms from James Sellers, Jul 10 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A081294 Expansion of (1-2*x)/(1-4*x).

Original entry on oeis.org

1, 2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912, 2147483648, 8589934592, 34359738368, 137438953472, 549755813888, 2199023255552, 8796093022208, 35184372088832
Offset: 0

Views

Author

Paul Barry, Mar 17 2003

Keywords

Comments

Binomial transform of A046717. Second binomial transform of A000302 (with interpolated zeros). Partial sums are A007583.
Counts closed walks of length 2n at a vertex of the cyclic graph on 4 nodes C_4. With interpolated zeros, counts closed walks of length n at a vertex of the cyclic graph on 4 nodes C_4. - Paul Barry, Mar 10 2004
In general, Sum_{k=0..n} Sum_{j=0..n} C(2*(n-k), j)*C(2*k, j)*r^j has expansion (1 - (r+1)*x)/(1 - (r+3)*x - (r-1)*(r+3)*x^2 + (r-1)^3*x^3). - Paul Barry, Jun 04 2005 [corrected by Jason Yuen, Jan 20 2025]
a(n) is the number of binary strings of length 2n with an even number of 0's (and hence an even number of 1's). - Toby Gottfried, Mar 22 2010
Number of compositions of n where there are 2 sorts of part 1, 4 sorts of part 2, 8 sorts of part 3, ..., 2^k sorts of part k. - Joerg Arndt, Aug 04 2014
a(n) is also the number of permutations simultaneously avoiding 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
INVERT transform of powers of 2 (A000079). - Alois P. Heinz, Feb 11 2021
a(n) is the number of elements in an n-interval of the binomial poset of even-sized subsets of positive integers, cf. Stanley reference and second formula by Paul Barry. Each multichain 0 = x_0 <= x_1 <= x_2 = 1 in such an n-interval corresponds to a closed walk described above by Paul Barry. More generally, each multichain 0 = x_0 <= x_1 <= ... <= x_k = 1 corresponds to a closed walk of length 2n on the k-dimensional hypercube, cf. A054879, A092812, A121822. - Geoffrey Critzer, Apr 21 2023

Examples

			G.f. = 1 + 2*x + 8*x^2 + 32*x^3 + 128*x^4 + 512*x^5 + 2048*x^6 + 8192*x^7 + ...
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Vol 1, second edition, Example 3.18.3-f, page 323.

Crossrefs

Row sums of triangle A136158.
Cf. A000079, A081295, A009117, A016742, A054879, A092812, A121822. Essentially the same as A004171.

Programs

  • Magma
    [(4^n+0^n)/2: n in [0..30]]; // Vincenzo Librandi, Jul 26 2011
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1-2*x)/(1-4*x))); // Marius A. Burtea, Jan 20 2020
    
  • Maple
    a:= n-> 2^max(0, (2*n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 20 2017
  • Mathematica
    CoefficientList[Series[(1-2x)/(1-4x),{x,0,40}],x] (* or *)
    Join[{1}, NestList[4 # &, 2, 40]] (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    x='x+O('x^100); Vec((1-2*x)/(1-4*x)) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: (1-2*x)/(1-4*x).
a(n) = 4*a(n-1) n > 1, with a(0)=1, a(1)=2.
a(n) = (4^n+0^n)/2 (i.e., 1 followed by 4^n/2, n > 0).
E.g.f.: exp(2*x)*cosh(2*x) = (exp(4*x)+exp(0))/2. - Paul Barry, May 10 2003
a(n) = Sum_{k=0..n} C(2*n, 2*k). - Paul Barry, May 20 2003
a(n) = A001045(2*n+1) - A001045(2*n-1) + 0^n/2. - Paul Barry, Mar 10 2004
a(n) = 2^n*A011782(n); a(n) = gcd(A011782(2n), A011782(2n+1)). - Paul Barry, Jan 12 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(2*(n-k), j)*C(2*k, j). - Paul Barry, Jun 04 2005
a(n) = Sum_{k=0..n} A038763(n,k). - Philippe Deléham, Sep 22 2006
a(n) = Integral_{x=0..4} p(n,x)^2/(Pi*sqrt(x(4-x))) dx, where p(n,x) is the sequence of orthogonal polynomials defined by C(2*n,n): p(n,x) = (2*x-4)*p(n-1,x) - 4*p(n-2,x), with p(0,x)=1, p(1,x)=-2+x. - Paul Barry, Mar 01 2007
a(n) = ((2+sqrt(4))^n + (2-sqrt(4))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Nov 22 2008
a(n) = A000079(n) * A011782(n). - Philippe Deléham, Dec 01 2008
a(n) = A004171(n-1) = A028403(n) - A000079(n) for n >= 1. - Jaroslav Krizek, Jul 27 2009
a(n) = Sum_{k=0..n} A201730(n,k)*3^k. - Philippe Deléham, Dec 06 2011
a(n) = Sum_{k=0..n} A134309(n,k)*2^k = Sum_{k=0..n} A055372(n,k). - Philippe Deléham, Feb 04 2012
G.f.: Q(0), where Q(k) = 1 - 2*x/(1 - 2/(2 - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 29 2013
E.g.f.: 1/2 + exp(4*x)/2 = (Q(0)+1)/2, where Q(k) = 1 + 4*x/(2*k+1 - 2*x*(2*k+1)/(2*x + (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 29 2013
a(n) = ceiling( 2^(2n-1) ). - Wesley Ivan Hurt, Jun 30 2013
G.f.: 1 + 2*x/(1 + x)*( 1 + 5*x/(1 + 4*x)*( 1 + 8*x/(1 + 7*x)*( 1 + 11*x/(1 + 10*x)*( 1 + ... )))). - Peter Bala, May 27 2017
Sum_{n>=0} 1/a(n) = 5/3. - Amiram Eldar, Aug 18 2022
Sum_{n>=0} a(n)*x^n/A000680(n) = E(x)^2 where E(x) = Sum_{n>=0} x^n/A000680(n). - Geoffrey Critzer, Apr 21 2023

A001077 Numerators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001076(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = -1.
a(2*n) with b(2*n) := A001076(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,9) = A023039(n), n >= 0 and a(2*n+1) = 2*S(2*n, 2*sqrt(5)) = A075796(n+1), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
From Greg Dresden, May 21 2023: (Start)
For n >= 2, 8*a(n) is the number of ways to tile this T-shaped figure of length n-1 with four colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 8*a(6) = 23112 different tilings.
_
|| _
|||_|||
|_|
(End)

Examples

			1  2  9  38  161  (A001077)
-, -, -, --, ---, ...
0  1  4  17   72  (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Programs

  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4, 1}, {1, 2}, 30]
    Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
    CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
    LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
    a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
  • PARI
    {a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
    
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • Sage
    [lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (1-2*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) + a(n-2), a(0)=1, a(1)=2.
a(n) = ((2 + sqrt(5))^n + (2 - sqrt(5))^n)/2.
a(n) = A014448(n)/2.
Limit_{n->infinity} a(n)/a(n-1) = phi^3 = 2 + sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = ((-i)^n)*T(n, 2*i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
Binomial transform of A084057. - Paul Barry, May 10 2003
E.g.f.: exp(2x)cosh(sqrt(5)x). - Paul Barry, May 10 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*5^k*2^(n-2k). - Paul Barry, Nov 15 2003
a(n) = 4*a(n-1) + a(n-2) when n > 2; a(1) = 1, a(2) = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 25 2004
a(n) = A001076(n+1) - 2*A001076(n) = A097924(n) - A015448(n+1); a(n+1) = A097924(n) + 2*A001076(n) = A097924(n) + 2(A048876(n) - A048875(n)). - Creighton Dement, Mar 19 2005
a(n) = F(3*n)/2 + F(3*n-1) where F() = Fibonacci numbers A000045. - Gerald McGarvey, Apr 28 2007
a(n) = A000032(3*n)/2.
For n >= 1: a(n) = (1/2)*Fibonacci(6*n)/Fibonacci(3*n) and a(n) = integer part of (2 + sqrt(5))^n. - Artur Jasinski, Nov 28 2011
a(n) = Sum_{k=0..n} A201730(n,k)*4^k. - Philippe Deléham, Dec 06 2011
a(n) = A001076(n) + A015448(n). - R. J. Mathar, Jul 06 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) is the (1,1)-entry of the matrix W^n with W=[2, sqrt(5); sqrt(5), 2]. - Carmine Suriano, Mar 21 2014
From Rigoberto Florez, Apr 03 2019: (Start)
a(n) = A099919(n) + A049651(n) if n > 0.
a(n) = 1 + Sum_{k=0..n-1} L(3*k + 1) if n >= 0, L(n) = n-th Lucas number (A000032). (End)
From Christopher Hohl, Aug 22 2021: (Start)
For n >= 2, a(2n-1) = A079962(6n-9) + A079962(6n-3).
For n >= 1, a(2n) = sqrt(20*A079962(6n-3)^2 + 1). (End)
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*4^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*4^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 4^n*Sum_{k=0..n} A374439(n, k)*(-1/4)^k. - Peter Luschny, Jul 26 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 5*(-1)^(n+1)/a(n)) = 3/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/4) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5*(-1)^(n+1)/a(n)) = 1/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/4) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A006012 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.

Original entry on oeis.org

1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520, 107616, 367424, 1254464, 4283008, 14623104, 49926400, 170459392, 581984768, 1987020288, 6784111616, 23162405888, 79081400320, 270000789504, 921840357376, 3147359850496
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 4, s(2n) = 4. - Herbert Kociemba, Jun 12 2004
a(n-1) counts permutations pi on [n] for which the pairs {i, pi(i)} with i < pi(i), considered as closed intervals [i+1,pi(i)], do not overlap; equivalently, for each i in [n] there is at most one j <= i with pi(j) > i. Counting these permutations by the position of n yields the recurrence relation. - David Callan, Sep 02 2003
a(n) is the sum of (n+1)-th row terms of triangle A140070. - Gary W. Adamson, May 04 2008
The binomial transform is in A083878, the Catalan transform in A084868. - R. J. Mathar, Nov 23 2008
Equals row sums of triangle A152252. - Gary W. Adamson, Nov 30 2008
Counts all paths of length (2*n), n >= 0, starting at the initial node on the path graph P_7, see the second Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U_1 and U_3 be the unit-primitive matrices (see [Jeffery])
U_1 = U_(8,1) = [(0,1,0,0); (1,0,1,0); (0,1,0,1); (0,0,2,0)] and
U_3 = U_(8,3) = [(0,0,0,1); (0,0,2,0); (0,2,0,1); (2,0,2,0)]. Then a(n) = (1/4) * Trace(U_1^(2*n)) = (1/2^(n+2)) * Trace(U_3^(2*n)). (See also A084130, A001333.) (End)
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
a(n) is the first superdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Conjecture: With offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). For example, the 4 permutations of [4] not counted by a(4) are 1324, 1423, 2314, 2413. - David Callan, Aug 27 2014
The conjecture of David Callan above is correct - with offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). - Yonah Biers-Ariel, Jun 27 2017
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, ...
1, 0, 3, 0, 0, 0, ...
1, 0, 0, 3, 0, 0, ...
1, 0, 0, 0, 3, 0, ...
1, 0, 0, 0, 0, 3, ...
...
Take powers of M, extracting the upper left terms; getting the sequence starting: (1, 1, 2, 6, 20, 68, ...). (End)
From Gary W. Adamson, Jul 24 2016: (Start)
The sequence is the INVERT transform of the powers of 3 prefaced with a "1": (1, 1, 3, 9, 27, ...) and is N=3 in an infinite of analogous sequences starting:
N=1 (A000079): 1, 2, 4, 8, 16, 32, ...
N=2 (A001519): 1, 2, 5, 13, 34, 89, ...
N=3 (A006012): 1, 2, 6, 20, 68, 232, ...
N=4 (A052961): 1, 2, 7, 29, 124, 533, ...
N=5 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=6: 1, 2, 9, 53, 326, 2017, ...
... (End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2, 4>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first and fourth elements are larger than the second and third elements. - Sergey Kitaev, Dec 08 2020
a(n-1) is the number of permutations of [n] that can be obtained by placing n points on an X-shape (two crossing lines with slopes 1 and -1), labeling them 1,2,...,n by increasing y-coordinate, and then reading the labels by increasing x-coordinate. - Sergi Elizalde, Sep 27 2021
Consider a stack of pancakes of height n, where the only allowed operation is reversing the top portion of the stack. First, perform a series of reversals of decreasing sizes, followed by a series of reversals of increasing sizes. The number of distinct permutations of the initial stack that can be reached through these operations is a(n). - Thomas Baruchel, May 12 2025
Number of permutations of [n] that are correctly sorted after performing one left-to-right pass and one right-to-left pass of the cocktail sort. - Thomas Baruchel, May 16 2025

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms. Birkhäuser, Boston, 3rd edition, 1990, p. 86.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.4.8 Answer to Exer. 8.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006012 n = a006012_list !! n
    a006012_list = 1 : 2 : zipWith (-) (tail $ map (* 4) a006012_list)
    (map (* 2) a006012_list)
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [n le 2 select n else 4*Self(n-1)- 2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    A006012:=-(-1+2*z)/(1-4*z+2*z**2); # Simon Plouffe in his 1992 dissertation
    with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..7); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{4,-2},{1,2},50] (* or *) With[{c=Sqrt[2]}, Simplify[ Table[((2+c)^n+(3+2c)(2-c)^n)/(2(2+c)),{n,50}]]] (* Harvey P. Dale, Aug 29 2011 *)
  • PARI
    {a(n) = real(((2 + quadgen(8))^n))}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    {a(n) = if( n<0, 2^n, 1) * polsym(x^2 - 4*x + 2, abs(n))[abs(n)+1] / 2}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    Vec((1-2*x)/(1-4*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 05 2015
    
  • Python
    l = [1, 2]
    for n in range(2, 101): l.append(4 * l[n - 1] - 2 * l[n - 2])
    print(l)  # Indranil Ghosh, Jul 02 2017
    
  • SageMath
    A006012=BinaryRecurrenceSequence(4,-2,1,2)
    print([A006012(n) for n in range(41)]) # G. C. Greubel, Aug 27 2025

Formula

G.f.: (1-2*x)/(1 - 4*x + 2*x^2).
a(n) = 2*A007052(n-1) = A056236(n)/2.
Limit_{n -> oo} a(n)/a(n-1) = 2 + sqrt(2). - Zak Seidov, Oct 12 2002
From Paul Barry, May 08 2003: (Start)
Binomial transform of A001333.
E.g.f.: exp(2*x)*cosh(sqrt(2)*x). (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*2^(n-k) = Sum_{k=0..n} binomial(n, k)*2^(n-k/2)(1+(-1)^k)/2. - Paul Barry, Nov 22 2003 (typo corrected by Manfred Scheucher, Jan 17 2023)
a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n)/2.
a(n) = Sum_{k=0..n} 2^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
a(n) = A007070(n) - 2*A007070(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{k=0..n} A147703(n,k). - Philippe Deléham, Nov 29 2008
a(n) = Sum_{k=0..n} A201730(n,k). - Philippe Deléham, Dec 05 2011
G.f.: G(0) where G(k)= 1 + 2*x/((1-2*x) - 2*x*(1-2*x)/(2*x + (1-2*x)*2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: G(0)*(1-2*x)/2, where G(k) = 1 + 1/(1 - 2*x*(4*k+2-x)/( 2*x*(4*k+4-x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2014
a(-n) = a(n) / 2^n for all n in Z. - Michael Somos, Aug 24 2014
a(n) = A265185(n) / 4, connecting this sequence to the simple Lie algebra B_4. - Tom Copeland, Dec 04 2015
From G. C. Greubel, Aug 27 2025: (Start)
a(n) = 2^((n-2)/2)*( (n+1 mod 2)*A002203(n) + 2*sqrt(2)*(n mod 2)*A000129(n) ).
a(n) = 2^(n/2)*ChebyshevT(n, sqrt(2)). (End)

A084128 a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 12, 56, 272, 1312, 6336, 30592, 147712, 713216, 3443712, 16627712, 80285696, 387653632, 1871757312, 9037643776, 43637604352, 210700992512, 1017354387456, 4912221519872, 23718303629312, 114522100596736, 552961616904192, 2669934870003712
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Comments

Original name was: Generalized Fibonacci sequence.
Binomial transform of A084058.

Crossrefs

Programs

  • Magma
    [2^(n-1)*Evaluate(DicksonFirst(n,-1), 2): n in [0..40]]; // G. C. Greubel, Oct 13 2022
  • Maple
    a:=proc(n) option remember; if n=0 then 1 elif n=1 then 2 else
    4*a(n-1)+4*a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 31 2017
    a := n -> (2*I)^n*ChebyshevT(n, -I):
    seq(simplify(a(n)), n = 0..23); # Peter Luschny, Dec 03 2023
  • Mathematica
    CoefficientList[Series[(2 z - 1)/(4 z^2 + 4 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
    Table[2^(n-1) LucasL[n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)
    LinearRecurrence[{4,4},{1,2},30] (* Harvey P. Dale, Mar 01 2018 *)
  • PARI
    a(n)=if(n<0,0,polsym(4+4*x-x^2,n)[n+1]/2)
    
  • Sage
    [lucas_number2(n,4,-4)/2 for n in range(0, 23)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = 2^n * A001333(n).
G.f.: (1-2*x)/(1-4*x-4*x^2).
a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.
a(n) = (2 + 2*sqrt(2))^n/2 + (2 - 2*sqrt(2))^n/2.
E.g.f.: exp(2*x)*cosh(2*x*sqrt(2)).
From Johannes W. Meijer, Aug 01 2010: (Start)
Lim_{k->infinity} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2).
Lim_{n->infinity} A084128(n)/A057087(n-1) = sqrt(2). (End)
a(n) = Sum_{k=0..n} A201730(n,k)*7^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k-2)/(x*(4*k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = 2^(n-1)*A002203(n). - Vladimir Reshetnikov, Oct 07 2016

A084059 a(n) = 4*a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 10, 44, 196, 872, 3880, 17264, 76816, 341792, 1520800, 6766784, 30108736, 133968512, 596091520, 2652303104, 11801395456, 52510188032, 233643543040, 1039594548224, 4625665278976, 20581850212352, 91578731407360
Offset: 0

Views

Author

Paul Barry, May 10 2003

Keywords

Comments

2*A084059 is the Lucas sequence V(4,-2). - Bruno Berselli, Jan 09 2013

Crossrefs

Cf. A090017, A084120 (binomial transform), A002533 (inverse binomial transform).

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=4*a[n-1]+2*a[n-2]; od; a; # G. C. Greubel, Jan 03 2020
  • Magma
    [n le 2 select n else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    seq(simplify(2^(n/2)*(-I)^n*ChebyshevT(n, I*sqrt(2))), n = 0..30); # G. C. Greubel, Jan 03 2020
  • Mathematica
    Table[(-I)^n*2^(n/2)*ChebyshevT[n, I*Sqrt[2]], {n,0,30}] (* G. C. Greubel, Jan 03 2020 *)
  • PARI
    Vec((1-2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
    
  • PARI
    vector(31, n, round((-I)^(n-1)*2^((n-1)/2)*polchebyshev(n-1, 1, I*sqrt(2))) ) \\ G. C. Greubel, Jan 03 2020
    
  • Sage
    [lucas_number2(n,4,-2)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

E.g.f.: exp(2*x)*cosh(sqrt(6)*x).
a(n) = ((2+sqrt(6))^n + (2-sqrt(6))^n)/2. - Paul Barry, May 13 2003
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*2^(n-k)*3^k. - Paul Barry, Jan 15 2007
G.f.: (1-2*x)/(1-4*x-2*x^2). - Philippe Deléham, Sep 07 2009
a(n) = A090017(n+1) - 2*A090017(n). - R. J. Mathar, Apr 05 2011
a(n) = Sum_{k=0..n} A201730(n,k)*5^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k-2)/(x*(3*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = (-i)^n*2^(n/2)*ChebyshevT(n, i*sqrt(2)) = 2^((n-2)/2)*Lucas(n, 2*sqrt(2)). - G. C. Greubel, Jan 03 2020

A108851 a(n) = 4*a(n-1) + 3*a(n-2), a(0) = 1, a(1) = 2.

Original entry on oeis.org

1, 2, 11, 50, 233, 1082, 5027, 23354, 108497, 504050, 2341691, 10878914, 50540729, 234799658, 1090820819, 5067682250, 23543191457, 109375812578, 508132824683, 2360658736466, 10967033419913, 50950109889050
Offset: 0

Views

Author

Philippe Deléham, Jul 11 2005

Keywords

Comments

Binomial transform of A083098, second binomial transform of (1, 0, 7, 0, 49, 0, 243, 0, ...).

Crossrefs

Cf. A080042. - Zerinvary Lajos, May 14 2009
Appears in A179596, A179597 and A126473. - Johannes W. Meijer, Aug 01 2010

Programs

  • Magma
    [Floor(((2 + Sqrt(7))^n + (2 - Sqrt(7))^n) / 2): n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
    
  • Mathematica
    LinearRecurrence[{4,3},{1,2},30] (* Harvey P. Dale, Jan 02 2022 *)
  • PARI
    a(n)=round(((2+sqrt(7))^n+(2-sqrt(7))^n)/2) \\ Charles R Greathouse IV, Dec 06 2011
  • Sage
    [lucas_number2(n,4,-3)/2 for n in range(0, 22)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = ((2 + sqrt(7))^n + (2 - sqrt(7))^n) / 2.
G.f.: (1 - 2*x) / (1 - 4*x - 3*x^2).
E.g.f.: exp(2*x)*cosh(sqrt(7)*x).
a(n+1)/a(n) converges to 2 + sqrt(7) = 4.645751311064...
Limit_{k->oo} a(n+k)/a(k) = A108851(n) + A015530(n)*sqrt(7); also lim_{n->oo} A108851(n)/A015530(n) = sqrt(7). - Johannes W. Meijer, Aug 01 2010
a(n) = Sum_{k=0..n} A201730(n,k)*6^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(7*k-4)/(x*(7*k+3) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = (2 + sqrt(7))^n - A015530(n)*sqrt(7). - Robert FERREOL, Aug 04 2025

A139011 Real part of (2 + i)^n, where i = sqrt(-1).

Original entry on oeis.org

1, 2, 3, 2, -7, -38, -117, -278, -527, -718, -237, 2642, 11753, 33802, 76443, 136762, 164833, -24478, -922077, -3565918, -9653287, -20783558, -34867797, -35553398, 32125393, 306268562, 1064447283, 2726446322, 5583548873, 8701963882
Offset: 0

Views

Author

Gary W. Adamson, Apr 05 2008

Keywords

Comments

Imaginary part of (2 + i)^n gives A099456.
Irrespective of signs, odd-indexed terms of A006496 interleaved with even-indexed signs of A006495.
Binomial transform of A146559, second binomial transform of A056594. - Philippe Deléham, Dec 02 2008

Examples

			1 + 2*x + 3*x^2 + 2*x^3 - 7*x^4 - 38*x^5 - 117*x^6 - 278*x^7 - 527*x^8 + ...
a(5) = -38 since (2 + i)^5 = (-38 + 41*i).
a(5) = -38 since [2,-1; 1,2]^5 = [ -38,-41; 41,-38], where 41 = A099456(5).
a(5) = -38 = A006496(5).
		

Crossrefs

Cf. A099456, A006495, A006496, A056594, A146559 (inv bin. transf.).

Programs

  • Magma
    [ Integers()!Real((2+Sqrt(-1))^n): n in [0..29] ];  // Bruno Berselli, Apr 26 2011
  • Maple
    restart: G(x):=exp(x)^2*cos(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=1..29 ); # Zerinvary Lajos, Apr 06 2009
  • Mathematica
    Re[(2+I)^Range[0,30]] (* or *) LinearRecurrence[{4,-5},{1,2},30] (* Harvey P. Dale, Nov 02 2022 *)
  • PARI
    a(n) = real((2 + I)^n) /* Michael Somos, Dec 26 2009 */
    
  • PARI
    Vec((1 - 2*x) / (1 - 4*x + 5*x^2) + O(x^30)) \\ Colin Barker, Sep 22 2017
    
  • Sage
    [lucas_number2(n,4,5)/2 for n in range(0,31)] # Zerinvary Lajos, Jul 08 2008
    

Formula

Real part of (2 + i)^n, i^2 = -1.
Term (1,1) of matrix [2,-1; 1,2]^n.
(a(n))^2 + (A099456(n))^2 = 5^n.
From R. J. Mathar, Apr 06 2008: (Start)
O.g.f.: (1-2x) /(1-4x+5x^2).
a(n) = 4*a(n-1) - 5*a(n-2) = 2*A099456(n-1) - 5*A099456(n-2). (End)
E.g.f.: exp(x)^2*cos(x). - Zerinvary Lajos, Apr 06 2009
a(-n) = a(n) / 5^n. - Michael Somos, Dec 26 2010
a(n) = Sum_{k=0..n} A098158(n,k)*2^(2k-n)*(-1)^(n-k). - Philippe Deléham, Dec 02 2008
2*a(n) - a(n+1) = A099456(n-1) for n>0. First differences are (up to sign) A118444. - Paul Curtz, Apr 25 2011
a(n) = Sum_{k=0..n} A201730(n,k)*(-2)^k. - Philippe Deléham, Dec 06 2011
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*2^(n-2*k)*binomial(n,2*k). - Gerry Martens, Sep 18 2022

Extensions

Cross-reference corrected by Franklin T. Adams-Watters, Jan 06 2009
Added a(0)=1 by Michael Somos, Dec 26 2010
Edited by Franklin T. Adams-Watters, Apr 10 2011
Showing 1-10 of 13 results. Next