A201730 Triangle T(n,k), read by rows, given by (2,1/2,3/2,0,0,0,0,0,0,0,...) DELTA (0,1/2,-1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
1, 2, 0, 5, 1, 0, 14, 6, 0, 0, 41, 26, 1, 0, 0, 122, 100, 10, 0, 0, 0, 365, 363, 63, 1, 0, 0, 0, 1094, 1274, 322, 14, 0, 0, 0, 0, 3281, 4372, 1462, 116, 1, 0, 0, 0, 0, 9842, 14760, 6156, 744, 18, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 2, 0 5, 1, 0 14, 6, 0, 0 41, 26, 1, 0, 0 122, 100, 10, 0, 0, 0 365, 363, 63, 1, 0, 0, 0
Programs
-
Maple
A201730 := proc(n,k) (1-2*x)/(1-4*x+(3-y)*x^2) ; coeftayl(%,y=0,k) ; coeftayl(%,x=0,n) ; end proc: seq(seq(A201730(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
-
Mathematica
m = 13; (* DELTA is defined in A084938 *) DELTA[Join[{2, 1/2, 3/2}, Table[0, {m}]], Join[{0, 1/2, -1/2}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
Formula
G.f.: (1-2x)/(1-4x+(3-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A139011(n), A000079(n), A007051(n), A006012(n), A001075(n), A081294(n), A001077(n), A084059(n), A108851(n), A084128(n), A081340(n), A084132(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k, k>+0} T(n+k,k) = A081704(n) .
T(n,k) = 3*T(n-1,k)+ Sum_{j>0} T(n-1-j,k-1).
T(n,k) = 4*T(n-1,k)+ T(n-2,k-1) - 3*T(n-2,k) with T(0,0)=1, T(1,0)= 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if n
A316657 For any n >= 0 with base-5 expansion Sum_{k=0..w} d_k * 5^k, let f(n) = Sum_{k=0..w} [d_k > 0] * (2 + i)^k * i^(d_k - 1) (where [] is an Iverson bracket and i denotes the imaginary unit); a(n) equals the real part of f(n).
0, 1, 0, -1, 0, 2, 3, 2, 1, 2, -1, 0, -1, -2, -1, -2, -1, -2, -3, -2, 1, 2, 1, 0, 1, 3, 4, 3, 2, 3, 5, 6, 5, 4, 5, 2, 3, 2, 1, 2, 1, 2, 1, 0, 1, 4, 5, 4, 3, 4, -4, -3, -4, -5, -4, -2, -1, -2, -3, -2, -5, -4, -5, -6, -5, -6, -5, -6, -7, -6, -3, -2, -3, -4, -3
Offset: 0
Comments
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..15624
- Rémy Sigrist, Colored scatterplot of (a(n), A316658(n)) for n=0..5^8-1 (where the hue is function of n)
- Wikipedia, Gaussian integer
Programs
-
Mathematica
a[n_] := Module[{d, z}, d = IntegerDigits[n, 5] // Reverse; z = Sum[ If[d[[i]]>0, (2+I)^(i-1)*I^(d[[i]]-1), 0], {i, 1, Length[d]}]; Re[z]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 06 2021, after PARI code *)
-
PARI
a(n) = my (d=Vecrev(digits(n, 5)), z=sum(i=1, #d, if (d[i], (2+I)^(i-1) * I^(d[i]-1), 0))); real(z)
A099456 Expansion of 1/(1 - 4*x + 5*x^2).
1, 4, 11, 24, 41, 44, -29, -336, -1199, -3116, -6469, -10296, -8839, 16124, 108691, 354144, 873121, 1721764, 2521451, 1476984, -6699319, -34182196, -103232189, -242017776, -451910159, -597551756, -130656229, 2465133864
Offset: 0
Comments
Associated to the knot 9_44 by the modified Chebyshev transform A(x) -> (1/(1+x^2)^2)A(x/(1+x^2)). See A099457 and A099458.
Imaginary part of (2+i)^n. - Gary W. Adamson, Apr 05 2008; Franklin T. Adams-Watters, Jan 06 2009
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Mei Bai, Wenchang Chu, and Dongwei Guo, Reciprocal Formulae among Pell and Lucas Polynomials, Mathematics, 10, 2691, (2022). See p. 5.
- Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- Dror Bar-Natan, The Rolfsen Knot Table
- Index entries for linear recurrences with constant coefficients, signature (4,-5).
Programs
-
Maple
seq(((2+I)^(n+1) - (2-I)^(n+1))/(2*I),n=0..30); # James R. Buddenhagen, Dec 29 2017
-
Mathematica
CoefficientList[Series[1/(1-4*x+5*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 09 2013 *) Table[((1+2*I)*(2-I)^n + (1-2*I)*(2+I)^n)/2,{n,0,20}] (* Vaclav Kotesovec, Oct 09 2013 *)
-
Sage
[lucas_number1(n,4,5) for n in range(1, 29)] # Zerinvary Lajos, Apr 22 2009
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-5)^k*4^(n-2k).
E.g.f. (with offset 1): exp(2*x)*sin(x). - Zerinvary Lajos, Apr 06 2009 [corrected by Joerg Arndt, Apr 24 2011]
a(n) = 4*a(n-1) - 5*a(n-2), a(0)=1, a(1)=4. - Vincenzo Librandi, Mar 22 2011
From Paul Curtz, Apr 24 2011: (Start)
a(n) - a(n-4) = 40 * A118444(n);
a(n) - a(n-2) = 10 * A139011(n). (End)
a(n) = ((1+2*i)*(2-i)^n + (1-2*i)*(2+i)^n)/2. - Vaclav Kotesovec, Oct 09 2013
a(n) = ((2+i)^(n+1) - (2-i)^(n+1))/(2*i).
Lim sup n->infinity |a(n)|/5^((n+1)/2) = 1. - Vaclav Kotesovec, Oct 09 2013
a(n) = Sum_{k=0..n} (-1)^k*2^(n-2*k)*binomial(n+1,2*k+1). - Gerry Martens, Sep 18 2022
E.g.f.: exp(2*x)*(cos(x) + 2*sin(x)). - Stefano Spezia, Jul 24 2025
A176594 a(n) = 5^(2^n).
5, 25, 625, 390625, 152587890625, 23283064365386962890625, 542101086242752217003726400434970855712890625, 293873587705571876992184134305561419454666389193021880377187926569604314863681793212890625
Offset: 0
Keywords
Comments
Also the hypotenuse of primitive Pythagorean triangles obtained by repeated application of basic formula c(n)=p(n)^2+q(n)^2 starting p(0)=2, q(0)=1, see A100686, A098122. Example: a(2)=25 since starting (2,1) gives Pythagorean triple (3,4,5) using (3,4) as new generators gives triple (7,24,25) hypotenuse 25=a(2). - Carmine Suriano, Feb 04 2011
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10
Crossrefs
Programs
-
Mathematica
NestList[#^2 &, 5, 8] (* Paolo Xausa, Jul 13 2025 *)
-
PARI
a(n) = 5^(2^n); \\ Michel Marcus, Jan 26 2016
Formula
a(n) = A165423(n+3).
a(n+1) = a(n)^2 with a(0)=5.
a(n-1) = (Im((2+i)^(2^n))^2 + Re((2+i)^(2^n))^2)^(1/2). - Carmine Suriano, Feb 04 2011
Sum_{n>=0} 1/a(n) = A078886. - Amiram Eldar, Nov 09 2020
Product_{n>=0} (1 + 1/a(n)) = 5/4. - Amiram Eldar, Jan 29 2021
Extensions
Offset corrected by R. J. Mathar, Jun 18 2010
A230710 Values of x such that x^2 + y^2 = 5^n with x and y coprime and 0 < x < y.
1, 3, 2, 7, 38, 44, 29, 336, 718, 237, 2642, 10296, 8839, 16124, 108691, 164833, 24478, 922077, 2521451, 1476984, 6699319, 34182196, 35553398, 32125393, 306268562, 597551756, 130656229, 2465133864, 8701963882, 6890111163, 15949374758, 98248054847, 135250416961
Offset: 1
Keywords
Comments
The corresponding y-values are in A230711.
For all non-coprime solutions (x,y) to the equation x^2 + y^2 = p^n, x and y are both divisible by the prime p.
Using de Moivre's Theorem (in essence), define (c,d)*(e,f) as (ce-df,cf+de). Then a(n) = min{|u(n)|, |v(n)|}, where (u(n),v(n)) = (2,1)^n = (2,1)*(2,1)^[n-1]. Proof: It can be readily seen that u^2(n) + v^2(n) = 5^n. To show that u(n) and v(n) are relatively prime, assume that x,y are relatively prime. Then (2,1)*(x,y) = (2x-y, x+2y). If a prime p were to divide both of 2x-y and x+2y, then p would divide 5y, so p=5. Now suppose x == 2 (mod 5) and y == 1 (mod 5). It can be seen that 2x-y == -2 (mod 5) and x+2y == -1 (mod 5). The reverse also holds. Because u(1)=2 and v(1)=1, the result follows inductively. - Richard Peterson, May 21 2021
Examples
a(4)=7 because 7^2 + 24^2 = 625 = 5^4.
Links
- Zak Seidov, Table of n, a(n) for n = 1..200
- Chris Busenhart, Lorenz Halbeisen, Norbert Hungerbühler, and Oliver Riesen, On primitive solutions of the Diophantine equation x^2+ y^2= M, Eidgenössische Technische Hochschule (ETH Zürich, Switzerland, 2020).
Programs
-
Mathematica
Table[Select[PowersRepresentations[5^n, 2, 2], CoprimeQ[#[[1]], #[[2]]] &][[1,1]], {n, 33}] (* T. D. Noe, Nov 04 2013 *)
Extensions
Typo in data fixed by Colin Barker, Nov 02 2013
A180957 Generalized Narayana triangle for (-1)^n.
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, -2, -5, -2, 1, 1, -5, -15, -15, -5, 1, 1, -9, -30, -41, -30, -9, 1, 1, -14, -49, -77, -77, -49, -14, 1, 1, -20, -70, -112, -125, -112, -70, -20, 1, 1, -27, -90, -126, -117, -117, -126, -90, -27, 1, 1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 1, 1; 1, 0, 0, 1; 1, -2, -5, -2, 1; 1, -5, -15, -15, -5, 1; 1, -9, -30, -41, -30, -9, 1; 1, -14, -49, -77, -77, -49, -14, 1; 1, -20, -70, -112, -125, -112, -70, -20, 1; 1, -27, -90, -126, -117, -117, -126, -90, -27, 1; 1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A180957:= func< n,k | (&+[ (-1)^(k-j)*Binomial(n, j)*Binomial(n-j, 2*(k-j)) : j in [0..n]]) >; [A180957(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
-
Mathematica
T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j,0,n}]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
Sage
def A180957(n,k): return sum( (-1)^(k+j)*binomial(n,j)*binomial(n-j, 2*(k-j)) for j in (0..n)) flatten([[A180957(n,k) for k in (0..n)] for n in [0..15]]) # G. C. Greubel, Apr 06 2021
Formula
G.f.: 1/(1 -x -x*y + x/(1 -x -x*y)) = (1 -x*(1+y))/(1 -2*x*(1+y) +x^2*(1 +3*y +y^2)).
E.g.f.: exp((1+y)*x) * cos(sqrt(y)*x).
T(n, k) = Sum_{j=0..n} (-1)^(k-j)*binomial(n,j)*binomial(n-j, 2*(k-j)).
Sum_{k=0..n} T(n, k) = A139011(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A180958(n) (diagonal sums).
A292495 Triangle read by rows: T(n,k) = (-2)*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = (-1)^m.
0, 1, 1, 0, -2, -4, -1, -1, 3, 11, 0, 2, 4, -2, -24, 1, 1, -3, -11, -7, 41, 0, -2, -4, 2, 24, 38, -44, -1, -1, 3, 11, 7, -41, -117, -29, 0, 2, 4, -2, -24, -38, 44, 278, 336, 1, 1, -3, -11, -7, 41, 117, 29, -527, -1199, 0, -2, -4, 2, 24, 38, -44, -278, -336, 718
Offset: 0
Examples
First few rows are: 0; 1, 1; 0, -2, -4; -1, -1, 3, 11; 0, 2, 4, -2, -24; 1, 1, -3, -11, -7, 41; 0, -2, -4, 2, 24, 38, -44; -1, -1, 3, 11, 7, -41, -117, -29; 0, 2, 4, -2, -24, -38, 44, 278, 336.
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Crossrefs
Formula
T(n+1,n)^2 + T(n,n)^2 = 5^n.
Comments