cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A201730 Triangle T(n,k), read by rows, given by (2,1/2,3/2,0,0,0,0,0,0,0,...) DELTA (0,1/2,-1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 14, 6, 0, 0, 41, 26, 1, 0, 0, 122, 100, 10, 0, 0, 0, 365, 363, 63, 1, 0, 0, 0, 1094, 1274, 322, 14, 0, 0, 0, 0, 3281, 4372, 1462, 116, 1, 0, 0, 0, 0, 9842, 14760, 6156, 744, 18, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2011

Keywords

Comments

Riordan array ((1-2x)/(1-4x+3x^2),x^2/(1-4x+3x^2)).
A007318*A201701 as lower triangular matrices.

Examples

			Triangle begins:
1
2, 0
5, 1, 0
14, 6, 0, 0
41, 26, 1, 0, 0
122, 100, 10, 0, 0, 0
365, 363, 63, 1, 0, 0, 0
		

Crossrefs

Cf. A007051 (1st column), A261064 (2nd column).

Programs

  • Maple
    A201730 := proc(n,k)
        (1-2*x)/(1-4*x+(3-y)*x^2) ;
        coeftayl(%,y=0,k) ;
        coeftayl(%,x=0,n) ;
    end proc:
    seq(seq(A201730(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
  • Mathematica
    m = 13;
    (* DELTA is defined in A084938 *)
    DELTA[Join[{2, 1/2, 3/2}, Table[0, {m}]], Join[{0, 1/2, -1/2}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)

Formula

G.f.: (1-2x)/(1-4x+(3-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A139011(n), A000079(n), A007051(n), A006012(n), A001075(n), A081294(n), A001077(n), A084059(n), A108851(n), A084128(n), A081340(n), A084132(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k, k>+0} T(n+k,k) = A081704(n) .
T(n,k) = 3*T(n-1,k)+ Sum_{j>0} T(n-1-j,k-1).
T(n,k) = 4*T(n-1,k)+ T(n-2,k-1) - 3*T(n-2,k) with T(0,0)=1, T(1,0)= 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if n

A316657 For any n >= 0 with base-5 expansion Sum_{k=0..w} d_k * 5^k, let f(n) = Sum_{k=0..w} [d_k > 0] * (2 + i)^k * i^(d_k - 1) (where [] is an Iverson bracket and i denotes the imaginary unit); a(n) equals the real part of f(n).

Original entry on oeis.org

0, 1, 0, -1, 0, 2, 3, 2, 1, 2, -1, 0, -1, -2, -1, -2, -1, -2, -3, -2, 1, 2, 1, 0, 1, 3, 4, 3, 2, 3, 5, 6, 5, 4, 5, 2, 3, 2, 1, 2, 1, 2, 1, 0, 1, 4, 5, 4, 3, 4, -4, -3, -4, -5, -4, -2, -1, -2, -3, -2, -5, -4, -5, -6, -5, -6, -5, -6, -7, -6, -3, -2, -3, -4, -3
Offset: 0

Author

Rémy Sigrist, Jul 09 2018

Keywords

Comments

See A316658 for the imaginary part of f.
See A316707 for the square of the modulus of f.
The function f has nice fractal features (see scatterplot in Links section).
It appears that f defines a bijection from the nonnegative integers to the Gaussian integers.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{d, z}, d = IntegerDigits[n, 5] // Reverse; z = Sum[ If[d[[i]]>0, (2+I)^(i-1)*I^(d[[i]]-1), 0], {i, 1, Length[d]}]; Re[z]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 06 2021, after PARI code *)
  • PARI
    a(n) = my (d=Vecrev(digits(n, 5)), z=sum(i=1, #d, if (d[i], (2+I)^(i-1) * I^(d[i]-1), 0))); real(z)

Formula

a(5^n) = A139011(n) for any n >= 0.
a(3 * 5^n) = -A139011(n) for any n >= 0.

A099456 Expansion of 1/(1 - 4*x + 5*x^2).

Original entry on oeis.org

1, 4, 11, 24, 41, 44, -29, -336, -1199, -3116, -6469, -10296, -8839, 16124, 108691, 354144, 873121, 1721764, 2521451, 1476984, -6699319, -34182196, -103232189, -242017776, -451910159, -597551756, -130656229, 2465133864
Offset: 0

Author

Paul Barry, Oct 16 2004

Keywords

Comments

Associated to the knot 9_44 by the modified Chebyshev transform A(x) -> (1/(1+x^2)^2)A(x/(1+x^2)). See A099457 and A099458.
Imaginary part of (2+i)^n. - Gary W. Adamson, Apr 05 2008; Franklin T. Adams-Watters, Jan 06 2009

Crossrefs

Cf. A139011, A090131 (inv. bin. transf.)

Programs

  • Maple
    seq(((2+I)^(n+1) - (2-I)^(n+1))/(2*I),n=0..30);  # James R. Buddenhagen, Dec 29 2017
  • Mathematica
    CoefficientList[Series[1/(1-4*x+5*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 09 2013 *)
    Table[((1+2*I)*(2-I)^n + (1-2*I)*(2+I)^n)/2,{n,0,20}] (* Vaclav Kotesovec, Oct 09 2013 *)
  • Sage
    [lucas_number1(n,4,5) for n in range(1, 29)] # Zerinvary Lajos, Apr 22 2009

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-5)^k*4^(n-2k).
E.g.f. (with offset 1): exp(2*x)*sin(x). - Zerinvary Lajos, Apr 06 2009 [corrected by Joerg Arndt, Apr 24 2011]
a(n) = 4*a(n-1) - 5*a(n-2), a(0)=1, a(1)=4. - Vincenzo Librandi, Mar 22 2011
From Paul Curtz, Apr 24 2011: (Start)
a(n) - a(n-4) = 40 * A118444(n);
a(n) - a(n-2) = 10 * A139011(n). (End)
a(n) = ((1+2*i)*(2-i)^n + (1-2*i)*(2+i)^n)/2. - Vaclav Kotesovec, Oct 09 2013
a(n) = ((2+i)^(n+1) - (2-i)^(n+1))/(2*i).
Lim sup n->infinity |a(n)|/5^((n+1)/2) = 1. - Vaclav Kotesovec, Oct 09 2013
a(n) = Sum_{k=0..n} (-1)^k*2^(n-2*k)*binomial(n+1,2*k+1). - Gerry Martens, Sep 18 2022
E.g.f.: exp(2*x)*(cos(x) + 2*sin(x)). - Stefano Spezia, Jul 24 2025

A176594 a(n) = 5^(2^n).

Original entry on oeis.org

5, 25, 625, 390625, 152587890625, 23283064365386962890625, 542101086242752217003726400434970855712890625, 293873587705571876992184134305561419454666389193021880377187926569604314863681793212890625
Offset: 0

Author

Vincenzo Librandi, Apr 21 2010

Keywords

Comments

Also the hypotenuse of primitive Pythagorean triangles obtained by repeated application of basic formula c(n)=p(n)^2+q(n)^2 starting p(0)=2, q(0)=1, see A100686, A098122. Example: a(2)=25 since starting (2,1) gives Pythagorean triple (3,4,5) using (3,4) as new generators gives triple (7,24,25) hypotenuse 25=a(2). - Carmine Suriano, Feb 04 2011

Crossrefs

Programs

Formula

a(n) = A165423(n+3).
a(n+1) = a(n)^2 with a(0)=5.
a(n-1) = (Im((2+i)^(2^n))^2 + Re((2+i)^(2^n))^2)^(1/2). - Carmine Suriano, Feb 04 2011
Sum_{n>=0} 1/a(n) = A078886. - Amiram Eldar, Nov 09 2020
Product_{n>=0} (1 + 1/a(n)) = 5/4. - Amiram Eldar, Jan 29 2021

Extensions

Offset corrected by R. J. Mathar, Jun 18 2010

A230710 Values of x such that x^2 + y^2 = 5^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

1, 3, 2, 7, 38, 44, 29, 336, 718, 237, 2642, 10296, 8839, 16124, 108691, 164833, 24478, 922077, 2521451, 1476984, 6699319, 34182196, 35553398, 32125393, 306268562, 597551756, 130656229, 2465133864, 8701963882, 6890111163, 15949374758, 98248054847, 135250416961
Offset: 1

Author

Colin Barker, Oct 28 2013

Keywords

Comments

The corresponding y-values are in A230711.
For all non-coprime solutions (x,y) to the equation x^2 + y^2 = p^n, x and y are both divisible by the prime p.
Using de Moivre's Theorem (in essence), define (c,d)*(e,f) as (ce-df,cf+de). Then a(n) = min{|u(n)|, |v(n)|}, where (u(n),v(n)) = (2,1)^n = (2,1)*(2,1)^[n-1]. Proof: It can be readily seen that u^2(n) + v^2(n) = 5^n. To show that u(n) and v(n) are relatively prime, assume that x,y are relatively prime. Then (2,1)*(x,y) = (2x-y, x+2y). If a prime p were to divide both of 2x-y and x+2y, then p would divide 5y, so p=5. Now suppose x == 2 (mod 5) and y == 1 (mod 5). It can be seen that 2x-y == -2 (mod 5) and x+2y == -1 (mod 5). The reverse also holds. Because u(1)=2 and v(1)=1, the result follows inductively. - Richard Peterson, May 21 2021

Examples

			a(4)=7 because 7^2 + 24^2 = 625 = 5^4.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[5^n, 2, 2], CoprimeQ[#[[1]], #[[2]]] &][[1,1]], {n, 33}] (* T. D. Noe, Nov 04 2013 *)

Extensions

Typo in data fixed by Colin Barker, Nov 02 2013

A180957 Generalized Narayana triangle for (-1)^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, -2, -5, -2, 1, 1, -5, -15, -15, -5, 1, 1, -9, -30, -41, -30, -9, 1, 1, -14, -49, -77, -77, -49, -14, 1, 1, -20, -70, -112, -125, -112, -70, -20, 1, 1, -27, -90, -126, -117, -117, -126, -90, -27, 1, 1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1
Offset: 0

Author

Paul Barry, Sep 28 2010

Keywords

Examples

			Triangle begins
  1;
  1,   1;
  1,   1,    1;
  1,   0,    0,    1;
  1,  -2,   -5,   -2,    1;
  1,  -5,  -15,  -15,   -5,    1;
  1,  -9,  -30,  -41,  -30,   -9,    1;
  1, -14,  -49,  -77,  -77,  -49,  -14,   1;
  1, -20,  -70, -112, -125, -112,  -70, -20,    1;
  1, -27,  -90, -126, -117, -117, -126, -90,  -27,   1;
  1, -35, -105,  -90,   45,  131,   45, -90, -105, -35, 1;
		

Crossrefs

Variant: A061176.

Programs

  • Magma
    A180957:= func< n,k | (&+[ (-1)^(k-j)*Binomial(n, j)*Binomial(n-j, 2*(k-j)) : j in [0..n]]) >;
    [A180957(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
    
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j,0,n}];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
  • Sage
    def A180957(n,k): return sum( (-1)^(k+j)*binomial(n,j)*binomial(n-j, 2*(k-j)) for j in (0..n))
    flatten([[A180957(n,k) for k in (0..n)] for n in [0..15]]) # G. C. Greubel, Apr 06 2021

Formula

G.f.: 1/(1 -x -x*y + x/(1 -x -x*y)) = (1 -x*(1+y))/(1 -2*x*(1+y) +x^2*(1 +3*y +y^2)).
E.g.f.: exp((1+y)*x) * cos(sqrt(y)*x).
T(n, k) = Sum_{j=0..n} (-1)^(k-j)*binomial(n,j)*binomial(n-j, 2*(k-j)).
Sum_{k=0..n} T(n, k) = A139011(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A180958(n) (diagonal sums).

A292495 Triangle read by rows: T(n,k) = (-2)*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = (-1)^m.

Original entry on oeis.org

0, 1, 1, 0, -2, -4, -1, -1, 3, 11, 0, 2, 4, -2, -24, 1, 1, -3, -11, -7, 41, 0, -2, -4, 2, 24, 38, -44, -1, -1, 3, 11, 7, -41, -117, -29, 0, 2, 4, -2, -24, -38, 44, 278, 336, 1, 1, -3, -11, -7, 41, 117, 29, -527, -1199, 0, -2, -4, 2, 24, 38, -44, -278, -336, 718
Offset: 0

Author

Seiichi Manyama, Sep 22 2017

Keywords

Examples

			First few rows are:
   0;
   1,  1;
   0, -2, -4;
  -1, -1,  3,  11;
   0,  2,  4,  -2, -24;
   1,  1, -3, -11,  -7,  41;
   0, -2, -4,   2,  24,  38,  -44;
  -1, -1,  3,  11,   7, -41, -117, -29;
   0,  2,  4,  -2, -24, -38,   44, 278, 336.
		

Crossrefs

The diagonal of the triangle is related to A099456.
The next diagonal of the triangle is related to A139011.
T(n,k) = b*T(n-1,k-1) + T(n,k-1): A292789 (b=-3), this sequence (b=-2), A117918 and A228405 (b=1), A227418 (b=2), A292466 (b=4).

Formula

T(n+1,n)^2 + T(n,n)^2 = 5^n.
Showing 1-7 of 7 results.