cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A230711 Values of y such that x^2 + y^2 = 5^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

2, 4, 11, 24, 41, 117, 278, 527, 1199, 3116, 6469, 11753, 33802, 76443, 136762, 354144, 873121, 1721764, 3565918, 9653287, 20783558, 34867797, 103232189, 242017776, 451910159, 1064447283, 2726446322, 5583548873, 10513816601, 29729597084, 66349305331
Offset: 1

Views

Author

Colin Barker, Oct 28 2013

Keywords

Comments

The corresponding x-values are in A230710.

Examples

			a(4)=24 because 7^2+24^2=625=5^4.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[5^n, 2, 2], CoprimeQ[#[[1]], #[[2]]] &][[1,2]], {n, 33}] (* T. D. Noe, Nov 04 2013 *)

A230712 Values of x such that x^2 + y^2 = 37^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

1, 12, 107, 840, 5646, 27755, 124158, 462961, 961686, 5589325, 102654282, 1025046359, 8502347874, 64101459205, 356029844147, 1681548425760, 7005476875681, 21848430755052, 2978524660427, 772649642011800
Offset: 1

Views

Author

Colin Barker, Oct 28 2013

Keywords

Comments

The corresponding y-values are in A230713.

Examples

			a(3)=107 because 107^2+198^2=50653=37^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[37^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

A230743 Values of x such that x^2 + y^2 = 41^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

4, 9, 115, 720, 2476, 42471, 4765, 1788961, 3780956, 51872200, 310486445, 1142532559, 18483128564, 4205436520, 799862636324, 1584162310079, 23384002313285, 133802323596440, 526151093402156, 8041209044472401, 2783579583540395, 357525366658772391
Offset: 1

Views

Author

Colin Barker, Oct 29 2013

Keywords

Comments

The corresponding y-values are in A230744.

Examples

			a(3)=115 because 115^2+236^2=68921=41^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[41^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

A230759 Values of x such that x^2 + y^2 = 53^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

2, 28, 259, 1241, 3647, 14715, 399301, 4810319, 34161842, 146769868, 244200526, 4359995640, 73982566838, 804676166812, 4381447604821, 15981352647839, 8477785985767, 965700694136205, 13070487060661219, 114948480102611400, 541029996598203398
Offset: 1

Views

Author

Colin Barker, Oct 29 2013

Keywords

Comments

The corresponding y-values are in A230760.

Examples

			a(3)=259 because 259^2+286^2=148877=53^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[53^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

A230841 Values of x such that x^2 + y^2 = 61^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

5, 11, 234, 1320, 9475, 117469, 266286, 9184560, 3302155, 520632300, 1387108806, 23922442439, 154165737965, 933420304380, 13338456688674, 22995028210081, 1026964091673115, 713853567388260, 54078566783400895, 171226928056302601, 2435077776719657394
Offset: 1

Views

Author

Colin Barker, Oct 31 2013

Keywords

Comments

The corresponding y-values are in A230842.

Examples

			a(3)=234 because 234^2+415^2=226981=61^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[61^n, 2, 2], CoprimeQ[#[[1]], #[[2]]] &][[1, 1]], {n, 22}] (* T. D. Noe, Nov 04 2013 *)
    Table[Select[PowersRepresentations[61^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

Extensions

a(10) and a(20) corrected by Zak Seidov, Nov 02 2013

A230962 Values of x such that x^2 + y^2 = 73^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

3, 48, 296, 721, 10072, 213785, 1958709, 7613760, 21165597, 894454032, 12278087704, 59926173839, 62518379032, 3374316625735, 58552907681096, 416603004343680, 1261259807092797, 10231862403603888, 255781764375436389, 2697529798981443601, 11543491568219853608
Offset: 1

Views

Author

Colin Barker, Nov 02 2013

Keywords

Comments

The corresponding y-values are in A230963.

Examples

			a(3) = 296 because 296^2 + 549^2 = 389017 = 73^3.
		

Crossrefs

Programs

  • Maple
    f:=n ->  min([abs@Re,abs@Im]((3+8*I)^n)):
    map(f, [$1..50]); # Robert Israel, Mar 31 2017
  • Mathematica
    Table[Select[PowersRepresentations[73^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)
    Table[Min[Abs[Re[(3 + 8I)^n]], Abs[Im[(3 + 8I)^n]]], {n, 30}] (* Indranil Ghosh, Mar 31 2017, after formula by Robert Israel *)
  • Python
    from sympy import I, re, im
    print([min(abs(re((3 + 8*I)**n)), abs(im((3 + 8*I)**n))) for n in range(1, 31)]) # Indranil Ghosh, Mar 31 2017, after formula by Robert Israel

Formula

From Robert Israel, Mar 31 2017: (Start)
a(n) = min(abs(Re((3+8i)^n)), abs(Im((3+8i)^n))).
a(n) = abs(Re(3+8i)^n) if and only if 1/4 < frac(n*arctan(8/3)/Pi) < 3/4.
(End)

A341678 Irregular triangle read by rows: row n consists of all numbers x such that x^2 + y^2 = A006278(n), with 0 < x < y.

Original entry on oeis.org

1, 1, 4, 4, 9, 12, 23, 2, 19, 46, 67, 74, 86, 109, 122, 64, 103, 167, 191, 236, 281, 292, 359, 449, 512, 568, 601, 607, 664, 673, 743, 59, 132, 531, 581, 627, 876, 1008, 1284, 1588, 1659, 1723, 2092, 2136, 2317, 2373, 2736, 2757, 2803, 3072, 3164, 3333, 3469, 3704, 3821, 4028, 4077, 4136, 4371, 4596, 4668, 4712, 4851
Offset: 1

Views

Author

Richard Peterson, Feb 17 2021

Keywords

Comments

The n-th row of the triangle is of length 2^(n-1), since a product of n distinct primes congruent to 1 (mod 4) has 2^(n-1) solutions to being the sum of two squares.

Examples

			Triangle starts:
1,
1, 4,
4, 9, 12, 23,
2, 19, 46, 67, 74, 86, 109, 122,
64, 103, 167, 191, 236, 281, 292, 359, 449, 512, 568, 601, 607, 664, 673, 743,
...
In the second row, calculations are as follows. 5*13 is the product of the first two primes congruent to 1 (mod 4), and 65 = 1^2 + 8^2 = 4^2 + 7^2, so the second row is 1, 4.
		

Crossrefs

Cf. A236381 (1st column).

Programs

  • PARI
    row(n) = {my(t=1, q=3, v=vector(2^n/2)); for(k=1, n, until(q%4==1, q=nextprime(q+1)); t*=q); q=0; for(k=1, #v, until(issquare(t-q^2), q++); v[k]=q); v; } \\ Jinyuan Wang, Mar 03 2021

A348635 a(n) is the smallest positive number k coprime to (2n+1)!! such that (2n+1)!! + k^2 is a square.

Original entry on oeis.org

1, 1, 4, 4, 29, 17, 436, 356, 569, 1847, 27704, 72944, 1283333, 726079, 23833532, 45232276, 302068799, 616565857, 26369361188, 23157514888, 70991664061, 505527042479, 1150735735948, 13238389944712, 58668785675111, 209280259070287, 7809609503808088, 530566746979816
Offset: 1

Views

Author

Richard Peterson, Dec 13 2021

Keywords

Comments

a(n) always exists since the set of k coprime to (2n+1)!! and with (2n+1)!! + k^2 equal to a square is nonempty, because k = ((2n+1)!!-1)/2 is in the set.

Examples

			a(5)=29 since 106^2 - 29^2 = 10395 = 3*5*7*9*11 and 29 is relatively prime to 10395 and is as small as possible.
		

Crossrefs

Programs

  • PARI
    df(n) = (2*n)! / n! / 2^n; \\ A001147
    a(n) = my(d=df(n+1), k=1); while (!((gcd(d,k)==1) && issquare(d+k^2)), k++); k; \\ Michel Marcus, Jan 06 2022
    
  • PARI
    df(n) = (2*n)! / n! / 2^n; \\ A001147
    a(n) = my(d=df(n+1), m=sqrtint(d), k); while (!(issquare(m^2-d, &k) && gcd(d,k)==1), m++); k; \\ Michel Marcus, Jan 06 2022

Extensions

a(21)-a(24) and a(28) from Jon E. Schoenfield, Jan 06 2022
a(25)-a(27) from Jinyuan Wang, Jan 07 2022
Showing 1-8 of 8 results.