A090017 a(n) = 4*a(n-1) + 2*a(n-2) for n>1, a(0)=0, a(1)=1.
0, 1, 4, 18, 80, 356, 1584, 7048, 31360, 139536, 620864, 2762528, 12291840, 54692416, 243353344, 1082798208, 4817899520, 21437194496, 95384577024, 424412697088, 1888419942400, 8402505163776, 37386860539904, 166352452487168
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Lucas sequence: Specific names.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,2).
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2011
-
Mathematica
a[n_Integer] := (-I Sqrt[2])^(n - 1) ChebyshevU[ n - 1, I Sqrt[2] ] a[n_]:=(MatrixPower[{{1,5},{1,3}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) t={0,1};Do[AppendTo[t,4*t[[-1]]+2*t[[-2]]],{n,2,23}];t (* or *) LinearRecurrence[{4,2},{0,1},24] (* Indranil Ghosh, Feb 21 2017 *)
-
PARI
Vec(x/(1-4*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 12 2011
-
Sage
[lucas_number1(n, 4, -2) for n in range(0, 23)] # Zerinvary Lajos, Apr 23 2009
Formula
G.f.: x/(1 - 4*x - 2*x^2).
a(n) = (-i*sqrt(2))^(n-1) U(n-1, i*sqrt(2)) where U is the Chebyshev polynomial of the second kind and i^2 = -1.
a(n) = ((2+sqrt(6))^n - (2-sqrt(6))^n)/(2 sqrt(6)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009, Jan 07 2009
a(n+1) = Sum_{k=0..n} A099089(n,k)*2^k. - Philippe Deléham, Nov 21 2011
From Ilya Gutkovskiy, Aug 22 2016: (Start)
E.g.f.: sinh(sqrt(6)*x)*exp(2*x)/sqrt(6).
Number of zeros in substitution system {0 -> 11, 1 -> 11011} at step n from initial string "1" (1 -> 11011 -> 1101111011111101111011 -> ...). (End)
Extensions
Edited by Stuart Clary, Oct 25 2009
Comments