cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A124182 A skewed version of triangular array A081277.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 3, 4, 0, 0, 1, 8, 8, 0, 0, 0, 5, 20, 16, 0, 0, 0, 1, 18, 48, 32, 0, 0, 0, 0, 7, 56, 112, 64, 0, 0, 0, 0, 1, 32, 160, 256, 128, 0, 0, 0, 0, 0, 9, 120, 432, 576, 256, 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0,...] where DELTA is the operator defined in A084938. Falling diagonal sums in A052980.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 3, 4;
  0, 0, 1, 8,  8;
  0, 0, 0, 5, 20, 16;
  0, 0, 0, 1, 18, 48,  32;
  0, 0, 0, 0,  7, 56, 112,  64;
  0, 0, 0, 0,  1, 32, 160, 256,  128;
  0, 0, 0, 0,  0,  9, 120, 432,  576,  256;
  0, 0, 0, 0,  0,  1,  50, 400, 1120, 1280, 512;
		

Crossrefs

Cf. A025192 (column sums). Diagonals include A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Formula

T(0,0)=T(1,1)=1, T(n,k)=0 if n < k or if k < 0, T(n,k) = T(n-2,k-1) + 2*T(n-1,k-1).
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A090965(n), (-1)^n*A084120(n), (-1)^n*A006012(n), A033999(n), A000007(n), A001333(n), A084059(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sum_{k=0..floor(n/2)} T(n-k,k) = Fibonacci(n-1) = A000045(n-1).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 respectively. - Philippe Deléham, Dec 26 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x= 0,1,2,3,4,5,6 respectively. - Philippe Deléham, Nov 14 2008
G.f.: (1-y*x)/(1-2y*x-y*x^2). - Philippe Deléham, Dec 04 2011
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n > 0. - Philippe Deléham, Dec 04 2011

A138395 a(n) = 6*a(n-1) - 3*a(n-2), a(1) = 1, a(2) = 6.

Original entry on oeis.org

1, 6, 33, 180, 981, 5346, 29133, 158760, 865161, 4714686, 25692633, 140011740, 762992541, 4157920026, 22658542533, 123477495120, 672889343121, 3666903573366, 19982753410833, 108895809744900, 593426598236901, 3233872160186706, 17622953166409533
Offset: 1

Views

Author

Gary W. Adamson, Mar 19 2008

Keywords

Comments

a(n) equals the number of words of length n-1 over {0,1,2,3,4,5} avoiding 01, 02 and 03. - Milan Janjic, Dec 17 2015

Examples

			a(5) = 981 = 6*a(4) - 3*a(3) = 6*180 - 3*33.
		

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 6*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,5}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{6,-3},{1,6},30] (* Harvey P. Dale, Jan 18 2012 *)
  • PARI
    Vec(1/(1-6*x+3*x^2) + O(x^100)) \\ Altug Alkan, Dec 17 2015
    
  • SageMath
    A138395=BinaryRecurrenceSequence(6,-3,0,1)
    [A138395(n) for n in range(1,30)] # G. C. Greubel, Jan 10 2024

Formula

Limit_{n->oo} a(n)/a(n-1) = 3 + sqrt(6) = 5.44948974...
a(n) = ((3+sqrt(6))^n - (3-sqrt(6))^n)/(2*sqrt(6)). - Alexander R. Povolotsky, Apr 01 2008
a(n) = lower left term of n-th power of 2 X 2 matrix [1,2; 1,5].
G.f.: 1/(1 - 6*x + 3*x^2). - Philippe Deléham, Sep 09 2009
a(n) = Chebyshev_U(n, sqrt(3))*(sqrt(3))^n. - Paul Barry, Sep 28 2009

Extensions

More terms from Philippe Deléham, Sep 09 2009
a(21) and first formula corrected by Klaus Brockhaus, Oct 05 2009
Extended by T. D. Noe, May 23 2011

A180028 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 3*x)/(1 - 6*x - 3*x^2).

Original entry on oeis.org

1, 9, 57, 369, 2385, 15417, 99657, 644193, 4164129, 26917353, 173996505, 1124731089, 7270376049, 46996449561, 303789825513, 1963728301761, 12693739287105, 82053620627913, 530402941628793, 3428578511656497
Offset: 0

Views

Author

Johannes W. Meijer, Aug 09 2010; edited Jun 21 2013

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the center square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen.
On a 3 X 3 chessboard there are 2^9 = 512 ways to explode with fury on the center square (off the center square the piece behaves like a normal queen). The red queen is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program and A180140. For the center square the 512 red queens lead to 17 red queen sequences, see the overview of red queen sequences and the crossreferences.
The sequence above corresponds to just one red queen vector, i.e., A[5] = [111 111 111] vector. The other squares lead for this vector to A090018.
This sequence belongs to a family of sequences with g.f. (1+k*x)/(1 - 6*x - k*x^2). The members of this family that are red queen sequences are A180028 (k=3; this sequence), A180029 (k=2), A015451 (k=1), A000400 (k=0), A001653 (k=-1), A180034 (k=-2), A084120 (k=-3), A154626 (k=-4) and A000012 (k=-5). Other members of this family are A123362 (k=5), 6*A030192(k=-6).
Inverse binomial transform of A107903.

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.

Crossrefs

Cf. A180140 (berserker sequences)
Cf. A180032 (Corner and side squares).
Cf. Red queen sequences center square [decimal value A[5]]: A180028 [511], A180029 [255], A180031 [495], A015451 [127], A152240 [239], A000400 [63], A057088 [47], A001653 [31], A122690 [15], A180034 [23], A180036 [7], A084120 [19], A180038 [3], A154626 [17], A015449 [1], A000012 [16], A000007 [0].

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else 6*Self(n-1)+3*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 15 2011
  • Maple
    nmax:=19; m:=5; A[1]:=[0,1,1,1,1,0,1,0,1]: A[2]:=[1,0,1,1,1,1,0,1,0]: A[3]:=[1,1,0,0,1,1,1,0,1]: A[4]:=[1,1,0,0,1,1,1,1,0]: A[5]:=[1,1,1,1,1,1,1,1,1]: A[6]:=[0,1,1,1,1,0,0,1,1]: A[7]:=[1,0,1,1,1,0,0,1,1]: A[8]:=[0,1,0,1,1,1,1,0,1]: A[9]:=[1,0,1,0,1,1,1,1,0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{6,3},{1,9},50] (* Vincenzo Librandi, Nov 15 2011 *)

Formula

G.f.: (1+3*x)/(1 - 6*x - 3*x^2).
a(n) = 6*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 9.
a(n) = ((1-A)*A^(-n-1) + (1-B)*B^(-n-1))/4 with A=(-1+2*sqrt(3)/3) and B=(-1-2*sqrt(3)/3).
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)*A108411(n+1)/(A041017(n-1)*sqrt(12) - A041016(n-1)) for n >= 1.

A053979 Triangle T(n,k) giving number of rooted maps regardless of genus with n edges and k nodes (n >= 0, k = 1..n+1).

Original entry on oeis.org

1, 1, 1, 3, 5, 2, 15, 32, 22, 5, 105, 260, 234, 93, 14, 945, 2589, 2750, 1450, 386, 42, 10395, 30669, 36500, 22950, 8178, 1586, 132, 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429, 2027025, 6633360, 9163236, 7123780, 3463634, 1092560, 220708, 26333, 1430
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

Comments

Triangle T(n,k), read by rows, given by (1,2,3,4,5,6,7,8,9,...) DELTA (1,1,1,1,1,1,1,1,1,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 21 2011.
A127160*A007318 as infinite lower triangular matrices. - Philippe Deléham, Jan 06 2012

Examples

			A(x;t) = t + (t + t^2)*x + (3*t + 5*t^2 + 2*t^3)*x^2 + (15*t + 32*t^2 + 22*t^3 + 5*t^4)*x^3 + ...
Triangle begins :
n\k [1]     [2]     [3]     [4]     [5]     [6]    [7]   [8]
[0] 1;
[1] 1,      1;
[2] 3,      5,      2;
[3] 15,     32,     22,     5;
[4] 105,    260,    234,    93,     14;
[5] 945,    2589,   2750,   1450,   386,    42;
[6] 10395,  30669,  36500,  22950,  8178,   1586,  132;
[7] 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429;
[8] ...
		

Crossrefs

Programs

  • Maple
    G:=t/(1-(t+1)*z/(1-(t+2)*z/(1-(t+3)*z/(1-(t+4)*z/(1-(t+5)*z/(1-(t+6)*z/(1-(t+7)*z/(1-(t+8)*z/(1-(t+9)*z/(1-(t+10)*z/(1-(t+11)*z/(1-(t+12)*z)))))))))))):Gser:=simplify(series(G,z=0,10)):P[0]:=t:for n from 1 to 9 do P[n]:=sort(expand(coeff(Gser,z^n))) od:seq(seq(coeff(P[n],t^k),k=1..n+1),n=0..9); # Emeric Deutsch, Apr 01 2005
  • Mathematica
    g = t/Fold[1-((t+#2)*z)/#1&, 1, Range[12, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
  • PARI
    A053979_ser(N,t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++, y1 = (1 + t*x*y0^2 + 2*x^2*y0')/(1-x);
        if (y1 == y0, break()); y0 = y1); y0;
    };
    concat(apply(p->Vecrev(p), Vec(A053979_ser(10))))
    \\ test: y=A053979_ser(50); 2*x^2*deriv(y,x) == -t*x*y^2 + (1-x)*y - 1
    \\ Gheorghe Coserea, May 31 2017
    
  • PARI
    A053979_seq(N) = {
      my(t='t, R=vector(N), S=vector(N)); R[1]=S[1]=t;
      for (n=2, N,
        R[n] = t*subst(S[n-1],t,t+1);
        S[n] = R[n] + sum(k=1, n-1, R[k]*S[n-k]));
      apply(p->Vecrev(p), R/t);
    };
    concat(A053979_seq(10))
    \\ test: y=t*Ser(apply(p->Polrev(p,'t), A053979_seq(50)),'x); y == t + x*y^2 + x*y + 2*x^2*deriv(y,x) && y == t + x*y*subst(y,t,t+1) \\ Riccati eq && Dyck eq
    \\ Gheorghe Coserea, May 31 2017

Formula

G.f.: t/(1-(t+1)z/(1-(t+2)z/(1-(t+3)z/(1-(t+4)z/(1-(t+5)z/(1-... (Eq. (5) in the Arques-Beraud reference). - Emeric Deutsch, Apr 01 2005
Sum_{k = 0..n} (-1)^k*2^(n-k)*T(n,k) = A128709(n). Sum_{k = 0..n} T(n,k) = A000698(n+1). - Philippe Deléham, Mar 24 2007
From Peter Bala, Dec 22 2011: (Start)
The o.g.f. in the form G(x,t) = x/(1 - (t+1)*x^2/(1 - (t+2)*x^2/(1 - (t+3)*x^2/(1 - (t+4)*x^2/(1 - ... ))))) = x + (1+t)*x^3 + (3+5*t+2*t^2)*x^5 + ... satisfies the Riccati equation (1 - t*x*G)*G = x + x^3*dG/dx. The cases t = 0, t = 1 and t = 2 give A001147, A000698 and A167872, respectively. The cases t = -2, t = -3 and t = -4 give rational generating functions for aerated and signed versions of A000012, A025192 and A084120, respectively.
The identity G(x,1+t) = 1/(1+t)(1/x-1/G(x,t)) provided t <> -1 allows us to express G(x,n), n = 1,2,..., in terms of G(x,0), a generating function for the double factorial numbers.
Writing G(x,t) = Sum_{n >= 1} R(n,t)*x^(2*n-1), the row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) = (2*n-1)*R(n,t) + t*sum {k = 1..n} R(k,t)*R(n+1-k,t) with initial condition R(1,t) = 1.
G(x,t-1) = x + t*x^3 + (t+2*t^2)*x^5 + (3*t+7*t^2+5*t^3)*x^7 + ... is an o.g.f. for A127160.
The function b(x,t) = - t*G(1/x,t) satisfies the partial differential equation d/dx(b(x,t)) = -(t + (x + b(x,t))*b(x,t)). Hence the differential operator (D^2 + x*D + t), where D = d/dx, factorizes as (D - a(x,t))*(D - b(x,t)), where a(x,t) = -(x + b(x,t)). In the particular case t = -n, a negative integer, the functions a(x,-n) and b(x,-n) become rational functions of x expressible as the ratio of Hermite polynomials.
(End)

Extensions

More terms from Emeric Deutsch, Apr 01 2005

A084059 a(n) = 4*a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 10, 44, 196, 872, 3880, 17264, 76816, 341792, 1520800, 6766784, 30108736, 133968512, 596091520, 2652303104, 11801395456, 52510188032, 233643543040, 1039594548224, 4625665278976, 20581850212352, 91578731407360
Offset: 0

Views

Author

Paul Barry, May 10 2003

Keywords

Comments

2*A084059 is the Lucas sequence V(4,-2). - Bruno Berselli, Jan 09 2013

Crossrefs

Cf. A090017, A084120 (binomial transform), A002533 (inverse binomial transform).

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=4*a[n-1]+2*a[n-2]; od; a; # G. C. Greubel, Jan 03 2020
  • Magma
    [n le 2 select n else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    seq(simplify(2^(n/2)*(-I)^n*ChebyshevT(n, I*sqrt(2))), n = 0..30); # G. C. Greubel, Jan 03 2020
  • Mathematica
    Table[(-I)^n*2^(n/2)*ChebyshevT[n, I*Sqrt[2]], {n,0,30}] (* G. C. Greubel, Jan 03 2020 *)
  • PARI
    Vec((1-2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
    
  • PARI
    vector(31, n, round((-I)^(n-1)*2^((n-1)/2)*polchebyshev(n-1, 1, I*sqrt(2))) ) \\ G. C. Greubel, Jan 03 2020
    
  • Sage
    [lucas_number2(n,4,-2)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

E.g.f.: exp(2*x)*cosh(sqrt(6)*x).
a(n) = ((2+sqrt(6))^n + (2-sqrt(6))^n)/2. - Paul Barry, May 13 2003
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*2^(n-k)*3^k. - Paul Barry, Jan 15 2007
G.f.: (1-2*x)/(1-4*x-2*x^2). - Philippe Deléham, Sep 07 2009
a(n) = A090017(n+1) - 2*A090017(n). - R. J. Mathar, Apr 05 2011
a(n) = Sum_{k=0..n} A201730(n,k)*5^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k-2)/(x*(3*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = (-i)^n*2^(n/2)*ChebyshevT(n, i*sqrt(2)) = 2^((n-2)/2)*Lucas(n, 2*sqrt(2)). - G. C. Greubel, Jan 03 2020

A154626 a(n) = 2^n*A001519(n).

Original entry on oeis.org

1, 2, 8, 40, 208, 1088, 5696, 29824, 156160, 817664, 4281344, 22417408, 117379072, 614604800, 3218112512, 16850255872, 88229085184, 461973487616, 2418924584960, 12665653559296, 66318223015936, 347246723858432, 1818207451086848, 9520257811087360
Offset: 0

Views

Author

Paul Barry, Jan 13 2009

Keywords

Comments

Hankel transform of 1,1,3,11,45,... (see A026375). Binomial transform of A015448.
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, ...
1, 0, 5, 0, 0, ...
1, 0, 0, 5, 0, ...
1, 0, 0, 0, 5, ...
...
Take powers of M, extracting the upper left terms; getting
the sequence starting (1, 1, 2, 8, 40, 208, ...). (End)
The sequence is N=5 in an infinite set of INVERT transforms of powers of N prefaced with a "1". (1, 2, 8, 40, ...) is the INVERT transform of (1, 1, 5, 25, 125, ...). The first six of such sequences are shown in A006012 (N=3). - Gary W. Adamson, Jul 24 2016
From Gary W. Adamson, Jul 27 2016: (Start)
The sequence is the first in an infinite set in which we perform the operation for matrix M (Cf. Jul 22 2016), but change the left border successively from (1, 1, 1, 1, ...) then to (1, 2, 2, 2, ...), then (1, 3, 3, 3, ...) ...; generally (1, N, N, N, ...). Extracting the upper left terms of each matrix operation, we obtain the infinite set beginning:
N=1 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=2 (A084120): 1, 3, 15, 81, 441, 1403, ...
N=3 (A180034): 1, 4, 22, 124, 700, 3952, ...
N=4 (A001653): 1, 5, 29, 169, 985, 5741, ...
N=5 (A000400): 1, 6, 36, 216, 1296, 7776, ...
N=6 (A015451): 1, 7, 43, 265, 1633, 10063, ...
N=7 (A180029): 1, 8, 50, 316, 1996, 12608, ...
N=8 (A180028): 1, 9, 57, 369, 1285, 15417, ...
N=9 (.......): 1, 10, 64, 424, 2800, 18496, ...
N=10 (A123361): 1, 11, 71, 481, 3241, 21851, ...
N=11 (.......): 1, 12, 78, 540, 3708, 25488, ...
... Each of the sequences begins (1, (N+1), (7*N + 1),
(40*N + (N-1)^2), ... (End)
The set of infinite sequences shown (Cf. comment of Jul 27 2016), can be generated from the matrices P = [(1,N; 1,5]^n, (N=1,2,3,...) by extracting the upper left terms. Example: N=6 sequence (A015451): (1, 7, 43, 265, ...) can be generated from the matrix P = [(1,6); (1,5)]^n. - Gary W. Adamson, Jul 28 2016

Crossrefs

Programs

  • Magma
    [n le 2 select (n) else 6*Self(n-1)-4*Self(n-2): n in [1..25]]; // Vincenzo Librandi, May 15 2015
    
  • Mathematica
    LinearRecurrence[{6, -4}, {1, 2}, 30] (* Vincenzo Librandi, May 15 2015 *)
  • PARI
    Vec((1-4*x) / (1-6*x+4*x^2) + O(x^30)) \\ Colin Barker, Sep 22 2017

Formula

G.f.: (1 - 4*x) / (1 - 6*x + 4*x^2).
a(n) = A084326(n+1) - 4*A084326(n). - R. J. Mathar, Jul 19 2012
From Colin Barker, Sep 22 2017: (Start)
a(n) = (((3-sqrt(5))^n*(1+sqrt(5)) + (-1+sqrt(5))*(3+sqrt(5))^n)) / (2*sqrt(5)).
a(n) = 6*a(n-1) - 4*a(n-2) for n>1. (End)
E.g.f.: exp(3*x)*(5*cosh(sqrt(5)*x) - sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Aug 26 2025

A147720 Riordan array (1, x(1-x)/(1-3x)).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 18, 16, 6, 1, 0, 54, 60, 30, 8, 1, 0, 162, 216, 134, 48, 10, 1, 0, 486, 756, 558, 248, 70, 12, 1, 0, 1458, 2592, 2214, 1168, 410, 96, 14, 1, 0, 4374, 8748, 8478, 5160, 2150, 628, 126, 16
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Array [0,2,1,0,0,0,....] DELTA [1,0,0,0,......] for Deléham DELTA as in A084938.
Row sums are A001835. Diagonal sums are related to A030186.
Row sums of inverse are essentially A091593. A147720*A007318 is A147721.

Examples

			Triangle begins
1;
0,   1;
0,   2,   1;
0,   6,   4,   1;
0,  18,  16,   6,   1;
0,  54,  60,  30,   8,   1;
0, 162, 216, 134,  48,  10,   1;
		

Programs

  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1-3*x)/(1-(3+y)*x+y*x^2), {x, 0, nmax}],x],{y,0,nmax}],y]] (* Indranil Ghosh, Mar 10 2017, after Philippe Deléham *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001835(n), A147722(n), A084120(n) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Nov 15 2008
G.f.: (1-3*x)/(1-(3+y)*x+y*x^2). - Philippe Deléham, Feb 15 2012

A147721 a(n) = C(2,n) DELTA C(0,n).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 17, 7, 1, 41, 72, 40, 10, 1, 153, 301, 208, 72, 13, 1, 571, 1244, 1021, 446, 113, 16, 1, 2131, 5093, 4819, 2525, 813, 163, 19, 1, 7953, 20688, 22104, 13452, 5218, 1336, 222, 22, 1, 29681, 83481, 99192, 68568, 30986, 9586, 2042, 290, 25, 1
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Triangle T equal to [1,2,1,0,0,0,...] DELTA [1,0,0,0,...] for Deléham DELTA as in A084938.
T = A147720*A007318. Row sums are A147722.

Examples

			Triangle begins
    1;
    1,   1;
    3,   4,   1;
   11,  17,   7,   1;
   41,  72,  40,  10,   1;
  153, 301, 208,  72,  13,   1;
		

Crossrefs

Programs

  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 3*x)/(1 - 4*x + (1 + y)*x^2 - y*x), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017, after Philippe Deléham *)

Formula

Riordan array ((1-3x)/(1-4x+x^2), x(1-x)/(1-4x+x^2)).
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), n > 1. - Philippe Deléham, Feb 13 2012
G.f.: (1-3*x)/(1-4*x+(1+y)*x^2-y*x). - Philippe Deléham, Feb 13 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001835(n), A147722(n), A084120(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Feb 13 2012

A165241 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 9, 6, 1, 8, 24, 25, 10, 1, 16, 60, 85, 55, 15, 1, 32, 144, 258, 231, 105, 21, 1, 64, 336, 728, 833, 532, 182, 28, 1, 128, 768, 1952, 2720, 2241, 1092, 294, 36, 1, 256, 1728, 5040, 8280, 8361, 5301, 2058, 450, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 09 2009

Keywords

Comments

Rows sums: A006012; Diagonal sums: A052960.
The sums of each column of A117317 with its subsequent column, treated as a lower triangular matrix with an initial null column attached, or, equivalently, the products of the row polynomials p(n,y) of A117317 with (1+y) with the initial first row below added to the final result. The reversal of A117317 is A056242 with several combinatorial interpretations. - Tom Copeland, Jan 08 2017

Examples

			Triangle begins:
  1;
  1,  1;
  2,  3,  1;
  4,  9,  6,  1;
  8, 24, 25, 10,  1; ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. Sum_{k=0..n} T(n,k)*x^(n-k) = A123335(n), A000007(n), A000012(n), A006012(n), A084120(n), A090965(n), A165225(n), A165229(n), A165230(n), A165231(n), A165232(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively.
G.f.: (1-(1+y)*x)/(1-2(1+y)*x+(y+y^2)*x^2). - Philippe Deléham, Dec 19 2011
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2) with T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if nPhilippe Deléham, Dec 19 2011

Extensions

O.g.f. corrected by Tom Copeland, Jan 15 2017

A191348 Array read by antidiagonals: ((ceiling(sqrt(n)) + sqrt(n))^k + (ceiling(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 2, 1, 0, 8, 20, 7, 2, 1, 0, 16, 68, 26, 8, 3, 1, 0, 32, 232, 97, 32, 14, 3, 1, 0, 64, 792, 362, 128, 72, 15, 3, 1, 0, 128, 2704, 1351, 512, 376, 81, 16, 3, 1, 0
Offset: 0

Views

Author

Charles L. Hohn, May 31 2011

Keywords

Examples

			1, 0,  0,   0,    0,     0,      0,      0,       0,        0,         0, ...
1, 1,  2,   4,    8,    16,     32,     64,     128,      256,       512, ...
1, 2,  6,  20,   68,   232,    792,   2704,    9232,    31520,    107616, ...
1, 2,  7,  26,   97,   362,   1351,   5042,   18817,    70226,    262087, ...
1, 2,  8,  32,  128,   512,   2048,   8192,   32768,   131072,    524288, ...
1, 3, 14,  72,  376,  1968,  10304,  53952,  282496,  1479168,   7745024, ...
1, 3, 15,  81,  441,  2403,  13095,  71361,  388881,  2119203,  11548575, ...
1, 3, 16,  90,  508,  2868,  16192,  91416,  516112,  2913840,  16450816, ...
1, 3, 17,  99,  577,  3363,  19601, 114243,  665857,  3880899,  22619537, ...
1, 3, 18, 108,  648,  3888,  23328, 139968,  839808,  5038848,  30233088, ...
1, 4, 26, 184, 1316,  9424,  67496, 483424, 3462416, 24798784, 177615776, ...
1, 4, 27, 196, 1433, 10484,  76707, 561236, 4106353, 30044644, 219825387, ...
1, 4, 28, 208, 1552, 11584,  86464, 645376, 4817152, 35955712, 268377088, ...
1, 4, 29, 220, 1673, 12724,  96773, 736012, 5597777, 42574180, 323800109, ...
1, 4, 30, 232, 1796, 13904, 107640, 833312, 6451216, 49943104, 386642400, ...
...
		

Crossrefs

Row 1 is A000007, row 2 is A011782, row 3 is A006012, row 4 is A001075, row 5 is A081294, row 6 is A098648, row 7 is A084120, row 8 is A146963, row 9 is A001541, row 10 is A081341, row 11 is A084134, row 13 is A090965.
Row 3*2 is A056236, row 4*2 is A003500, row 5*2 is A155543, row 9*2 is A003499.
Cf. A191347 which uses floor() in place of ceiling().

Programs

  • PARI
    T(n, k) = if (k==0, 1, if (k==1, ceil(sqrt(n)), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
    matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 23 2019

Formula

For each row n >= 0 let T(n,0)=1 and T(n,1) = ceiling(sqrt(n)), then for each column k >= 2: T(n,k) = T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 23 2019
Showing 1-10 of 11 results. Next