cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A162517 Triangle of coefficients of polynomials defined by Binet form: P(n,x) = ((x + d)^n - (x - d)^n)/(2*d), where d = sqrt(x+4).

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, 4, 4, 16, 0, 5, 10, 41, 8, 16, 6, 20, 86, 48, 96, 0, 7, 35, 161, 169, 348, 48, 64, 8, 56, 280, 456, 992, 384, 512, 0, 9, 84, 462, 1044, 2449, 1744, 2400, 256, 256, 10, 120, 732, 2136, 5482, 5920, 8640, 2560, 2560, 0, 11, 165, 1122, 4026, 11407, 16721, 26420, 14240, 14720, 1280, 1024
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2009

Keywords

Examples

			First six rows:
  0
  1
  2...0
  3...1...4
  4...4...16...0
  5...10..41...8...16
		

Crossrefs

Programs

  • Magma
    m:=12;
    Q:= func< n,x | ((x+Sqrt(x+4))^n - (x-Sqrt(x+4))^n)/(2*Sqrt(x+4)) >;
    R:=PowerSeriesRing(Rationals(), m+1);
    T:= func< n,k | Coefficient(R!( Q(n, x) ), n-k) >;
    [0] cat [T(n,k): k in [1..n], n in [1..m]]; // G. C. Greubel, Jul 09 2023
    
  • Mathematica
    Q[n_, x_]:= Q[n, x]= ((x+Sqrt[x+4])^n -(x-Sqrt[x+4])^n)/(2*Sqrt[x+4]);
    T[n_, k_]:= Coefficient[Series[P[n,x], {x,0,n-k+1}], x, n-k];
    Join[{0}, Table[T[n,k], {n,12}, {k,n}]//Flatten] (* G. C. Greubel, Jul 09 2023 *)
  • SageMath
    def Q(n,x): return ((x+sqrt(x+4))^n - (x-sqrt(x+4))^n)/(2*sqrt(x+4))
    def T(n,k):
        P. = PowerSeriesRing(QQ)
        return P( Q(n,x) ).list()[n-k]
    [0]+flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 09 2023

Formula

Q(n,x) = (P(n+1, x) - x*P(n,x))/(x+4), where P(n, x) is the n-th polynomial of A162516.
Q(n, x) also has the recurrence Q(n, x) = 2*x*Q(n-1, x) - (x^2 - x - 4)*Q(n-2, x).
From G. C. Greubel, Jul 09 2023: (Start)
T(n, k) = [x^(n-k)](((x+sqrt(x+4))^n -(x-sqrt(x+4))^n)/(2*sqrt(x+4))).
Sum_{k=1..n-1} T(n, k) = A063727(n-2), n >= 2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A002605(n-1). (End)

A162515 Triangle of coefficients of polynomials defined by Binet form: P(n,x) = (U^n - L^n)/d, where U = (x + d)/2, L = (x - d)/2, d = sqrt(x^2 + 4).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 1, 1, 0, 4, 0, 3, 0, 1, 0, 5, 0, 6, 0, 1, 1, 0, 6, 0, 10, 0, 4, 0, 1, 0, 7, 0, 15, 0, 10, 0, 1, 1, 0, 8, 0, 21, 0, 20, 0, 5, 0, 1, 0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 1, 0, 10, 0, 36, 0, 56, 0, 35, 0, 6, 0, 1, 0, 11, 0, 45, 0, 84, 0, 70, 0, 21, 0, 1
Offset: 0

Views

Author

Clark Kimberling, Jul 05 2009

Keywords

Comments

Row sums 0,1,1,2,3,5,... are the Fibonacci numbers, A000045.
Note that the coefficients are given in decreasing order. - M. F. Hasler, Dec 07 2011
Essentially a mirror image of A168561. - Philippe Deléham, Dec 08 2013

Examples

			Polynomial expansion:
  0;
  1;
  x;
  x^2 + 1;
  x^3 + 2*x;
  x^4 + 3*x^2 + 1;
First rows:
  0;
  1;
  1, 0;
  1, 0, 1;
  1, 0, 2, 0;
  1, 0, 3, 0, 1;
  1, 0, 4, 0, 3, 0;
Row 6 matches P(6,x)=x^5 + 4*x^3 + 3*x.
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if (k mod 2)=0 then return Binomial(n- k/2, k/2);
        else return 0;
        fi; end;
    Concatenation([0], Flat(List([0..15], n-> List([0..n], k-> T(n,k) ))) ); # G. C. Greubel, Jan 01 2020
  • Magma
    function T(n,k)
      if (k mod 2) eq 0 then return Round( Gamma(n-k/2+1)/(Gamma(k/2+1)*Gamma(n-k+1)));
      else return 0;
      end if; return T; end function;
    [0] cat [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 01 2020
    
  • Maple
    0, seq(seq(`if`(`mod`(k,2)=0, binomial(n-k/2, k/2), 0), k = 0..n), n = 0..15); # G. C. Greubel, Jan 01 2020
  • Mathematica
    Join[{0}, Table[If[EvenQ[k], Binomial[n-k/2, k/2], 0], {n,0,15}, {k,0,n} ]//Flatten] (* G. C. Greubel, Jan 01 2020 *)
  • PARI
    row(n,d=sqrt(1+x^2/4+O(x^n))) = Vec(if(n,Pol(((x/2+d)^n-(x/2-d)^n)/d)>>1)) \\ M. F. Hasler, Dec 07 2011, edited Jul 05 2021
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k%2==0): return binomial(n-k/2, k/2)
        else: return 0
    [0]+flatten([[T(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 01 2020
    

Formula

P(n,x) = x*P(n-1, x) + P(n-2, x), where P(0,x)=0 and P(1,x)=1.
T(n,k) = T(n-1, k) + T(n-2, k-2) for n>=2. - Philippe Deléham, Dec 08 2013

A162514 Triangle of coefficients of polynomials defined by the Binet form P(n,x) = U^n + L^n, where U = (x + d)/2, L = (x - d)/2, d = (4 + x^2)^(1/2). Decreasing powers of x.

Original entry on oeis.org

2, 1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 4, 0, 2, 1, 0, 5, 0, 5, 0, 1, 0, 6, 0, 9, 0, 2, 1, 0, 7, 0, 14, 0, 7, 0, 1, 0, 8, 0, 20, 0, 16, 0, 2, 1, 0, 9, 0, 27, 0, 30, 0, 9, 0, 1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2, 1, 0, 11, 0, 44, 0, 77, 0, 55, 0, 11, 0, 1, 0, 12, 0, 54, 0, 112, 0, 105, 0, 36, 0, 2, 1, 0, 13, 0
Offset: 0

Views

Author

Clark Kimberling, Jul 05 2009

Keywords

Comments

For a signed version of this triangle corresponding to the row reversed version of the triangle A127672 see A244422. - Wolfdieter Lang, Aug 07 2014
The row reversed triangle is A114525. - Paolo Bonzini, Jun 23 2016

Examples

			Triangle begins
   2;  == 2
   1, 0;  == x + 0
   1, 0,  2;  == x^2 + 2
   1, 0,  3, 0;  == x^3 + 3*x + 0
   1, 0,  4, 0,  2;
   1, 0,  5, 0,  5, 0;
   1, 0,  6, 0,  9, 0,  2;
   1, 0,  7, 0, 14, 0,  7, 0;
   1, 0,  8, 0, 20, 0, 16, 0,  2;
   1, 0,  9, 0, 27, 0, 30, 0,  9, 0;
   1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2;
   ...
From _Wolfdieter Lang_, Aug 07 2014: (Start)
The row polynomials R(n, x) are:
  R(0, x) = 2, R(1, x) = 1 =   x*P(1,1/x),  R(2, x) = 1 + 2*x^2 = x^2*P(2,1/x), R(3, x) = 1 + 3*x^2 = x^3*P(3,1/x), ...
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Reverse[CoefficientList[LucasL[n, x], x]], {n, 0, 12}]//Flatten  (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    P(n)=
    {
        local(U, L, d, r, x);
        if ( n<0, return(0) );
        x = 'x+O('x^(n+1));
        d=(4 + x^2)^(1/2);
        U=(x+d)/2;  L=(x-d)/2;
        r = U^n+L^n;
        r = truncate(r);
        return( r );
    }
    for (n=0, 10, print(Vec(P(n))) ); /* show triangle */
    /* Joerg Arndt, Jul 24 2011 */

Formula

P(n,x) = x*P(n-1,x) + P(n-2,x) for n >= 2, P(0,x) = 2, P(1,x) = x.
From Wolfdieter Lang, Aug 07 2014: (Start)
T(n,m) = [x^(n-m)] P(n,x), m = 0, 1, ..., n and n >= 0.
G.f. of polynomials P(n,x): (2 - x*z)/(1 - x*z - z^2).
G.f. of row polynomials R(n,x) = Sum_{m=0..n} T(n,m)*x^m: (2 - z)/(1 - z - (x*z)^2) (rows for P(n,x) reversed).
(End)
For n > 0, T(n,2*m+1) = 0, T(n,2*m) = A034807(n,m). - Paolo Bonzini, Jun 23 2016

Extensions

Name clarified by Wolfdieter Lang, Aug 07 2014

A163762 Triangle of coefficients of polynomials H(n,x)=(U^n+L^n)/2+(U^n-L^n)/(2d), where U=x+d, L=x-d, d=(x+4)^(1/2).

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 1, 6, 13, 4, 1, 10, 29, 24, 16, 1, 15, 55, 81, 88, 16, 1, 21, 95, 207, 300, 144, 64, 1, 28, 154, 448, 813, 684, 496, 64, 1, 36, 238, 868, 1913, 2352, 2272, 768, 256, 1, 45, 354, 1554, 4077, 6625, 7984, 4704, 2560, 256, 1, 55, 510, 2622, 8061, 16283
Offset: 1

Views

Author

Clark Kimberling, Aug 04 2009

Keywords

Comments

H(n,x)=P(n,x)+Q(n,x), where P and Q are given by A162516, A162517.
H(n,0)=4^Floor(n/2) for n=0,1,2,...
H(n,1)=A063727(n); row sums
(Column 2)=A000217 (triangular numbers)

Examples

			First six rows:
1
1...1
1...3...4
1...6..13...4
1..10..29..24..16
1..15..55..81..88..16
Row 6 represents x^5+15*x^4+55*x^3+81*x^2+88*x+16.
		

Crossrefs

Formula

H(n,x)=2*x*H(n-1,x)-(x^2-x-4)*H(n-2,x), where H(0,x)=1, H(1,x)=x+1.
H(n,x)=(1+1/d)*U^n+(1-1/d)*L^n, where U=x+d, L=x-d, d=(x+4)^(1/2).

A152429 a(n) = (11^n + 5^n)/2.

Original entry on oeis.org

1, 8, 73, 728, 7633, 82088, 893593, 9782648, 107374753, 1179950408, 12973595113, 142680249368, 1569336258673, 17261966423528, 189877968549433, 2088639343496888, 22974941225731393, 252723895719373448
Offset: 0

Views

Author

Philippe Deléham, Dec 03 2008

Keywords

Comments

Binomial transform of A081343.
Inverse binomial transform of A143079.

Crossrefs

Cf. A162516.

Programs

  • GAP
    List([0..20], n-> (11^n+5^n)/2); # G. C. Greubel, Jan 08 2020
  • Magma
    [(11^n+5^n)/2: n in [0..20]]; // Vincenzo Librandi, Jun 01 2011
    
  • Maple
    seq( (11^n+5^n)/2, n=0..20); # G. C. Greubel, Jan 08 2020
  • Mathematica
    LinearRecurrence[{16,-55}, {1,8}, 20] (* G. C. Greubel, Jan 08 2020 *)
  • PARI
    vector(21, n, (11^(n-1) + 5^(n-1))/2 ) \\ G. C. Greubel, Jan 08 2020
    
  • Sage
    [(11^n+5^n)/2 for n in (0..20)] # G. C. Greubel, Jan 08 2020
    

Formula

a(n) = 16*a(n-1) - 55*a(n-2), with a(0)=1, a(1)=8.
G.f.: (1-8*x)/(1 - 16*x + 55*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*8^(2k-n)*9^(n-k).
a(n) = ((8 + sqrt(9))^n + (8 - sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
E.g.f.: (exp(11*x) + exp(5*x))/2. - G. C. Greubel, Jan 08 2020
Showing 1-5 of 5 results.