cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A192373 Constant term in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.

Original entry on oeis.org

1, 0, 7, 8, 77, 192, 1043, 3472, 15529, 57792, 240655, 934808, 3789653, 14963328, 60048443, 238578976, 953755537, 3798340224, 15162325975, 60438310184, 241126038941, 961476161856, 3835121918243, 15294304429744, 61000836720313, 243280700771904
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

The polynomials are given by p(n,x)=((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+4).
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=4+x+3x^2 -> 7+4x
p(3,x)=16x+4x^2+4x^3 -> 8+28x
p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 77+84x.
From these, read A192352=(1,0,7,8,77,...) and A049602=(0,2,4,28,84,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = Sqrt[x + 4];
    p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* A162517 *)
    Table[Expand[p[n, x]], {n, 1, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192373 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192374 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192375 *)

Formula

Conjecture: a(n) = 2*a(n-1)+10*a(n-2)-6*a(n-3)-9*a(n-4). G.f.: -x*(x+1)*(3*x-1) / (9*x^4+6*x^3-10*x^2-2*x+1). - Colin Barker, May 09 2014

A192374 Coefficient of x in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.

Original entry on oeis.org

0, 2, 4, 28, 84, 406, 1448, 6200, 23688, 97034, 380716, 1533844, 6079452, 24339742, 96844496, 386805104, 1541301648, 6150529682, 24521644756, 97819530508, 390080615652, 1555871900710, 6204937972088, 24747735482792, 98698893741336
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

The polynomials p(n,x) is defined by ((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+4). A192374=2*A192375. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			(See A192373.)
		

Crossrefs

Programs

Formula

Empirical G.f.: 2*x^2/(9*x^4+6*x^3-10*x^2-2*x+1). [Colin Barker, Nov 23 2012]

A162515 Triangle of coefficients of polynomials defined by Binet form: P(n,x) = (U^n - L^n)/d, where U = (x + d)/2, L = (x - d)/2, d = sqrt(x^2 + 4).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 1, 1, 0, 4, 0, 3, 0, 1, 0, 5, 0, 6, 0, 1, 1, 0, 6, 0, 10, 0, 4, 0, 1, 0, 7, 0, 15, 0, 10, 0, 1, 1, 0, 8, 0, 21, 0, 20, 0, 5, 0, 1, 0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 1, 0, 10, 0, 36, 0, 56, 0, 35, 0, 6, 0, 1, 0, 11, 0, 45, 0, 84, 0, 70, 0, 21, 0, 1
Offset: 0

Views

Author

Clark Kimberling, Jul 05 2009

Keywords

Comments

Row sums 0,1,1,2,3,5,... are the Fibonacci numbers, A000045.
Note that the coefficients are given in decreasing order. - M. F. Hasler, Dec 07 2011
Essentially a mirror image of A168561. - Philippe Deléham, Dec 08 2013

Examples

			Polynomial expansion:
  0;
  1;
  x;
  x^2 + 1;
  x^3 + 2*x;
  x^4 + 3*x^2 + 1;
First rows:
  0;
  1;
  1, 0;
  1, 0, 1;
  1, 0, 2, 0;
  1, 0, 3, 0, 1;
  1, 0, 4, 0, 3, 0;
Row 6 matches P(6,x)=x^5 + 4*x^3 + 3*x.
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if (k mod 2)=0 then return Binomial(n- k/2, k/2);
        else return 0;
        fi; end;
    Concatenation([0], Flat(List([0..15], n-> List([0..n], k-> T(n,k) ))) ); # G. C. Greubel, Jan 01 2020
  • Magma
    function T(n,k)
      if (k mod 2) eq 0 then return Round( Gamma(n-k/2+1)/(Gamma(k/2+1)*Gamma(n-k+1)));
      else return 0;
      end if; return T; end function;
    [0] cat [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 01 2020
    
  • Maple
    0, seq(seq(`if`(`mod`(k,2)=0, binomial(n-k/2, k/2), 0), k = 0..n), n = 0..15); # G. C. Greubel, Jan 01 2020
  • Mathematica
    Join[{0}, Table[If[EvenQ[k], Binomial[n-k/2, k/2], 0], {n,0,15}, {k,0,n} ]//Flatten] (* G. C. Greubel, Jan 01 2020 *)
  • PARI
    row(n,d=sqrt(1+x^2/4+O(x^n))) = Vec(if(n,Pol(((x/2+d)^n-(x/2-d)^n)/d)>>1)) \\ M. F. Hasler, Dec 07 2011, edited Jul 05 2021
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k%2==0): return binomial(n-k/2, k/2)
        else: return 0
    [0]+flatten([[T(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 01 2020
    

Formula

P(n,x) = x*P(n-1, x) + P(n-2, x), where P(0,x)=0 and P(1,x)=1.
T(n,k) = T(n-1, k) + T(n-2, k-2) for n>=2. - Philippe Deléham, Dec 08 2013

A162514 Triangle of coefficients of polynomials defined by the Binet form P(n,x) = U^n + L^n, where U = (x + d)/2, L = (x - d)/2, d = (4 + x^2)^(1/2). Decreasing powers of x.

Original entry on oeis.org

2, 1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 4, 0, 2, 1, 0, 5, 0, 5, 0, 1, 0, 6, 0, 9, 0, 2, 1, 0, 7, 0, 14, 0, 7, 0, 1, 0, 8, 0, 20, 0, 16, 0, 2, 1, 0, 9, 0, 27, 0, 30, 0, 9, 0, 1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2, 1, 0, 11, 0, 44, 0, 77, 0, 55, 0, 11, 0, 1, 0, 12, 0, 54, 0, 112, 0, 105, 0, 36, 0, 2, 1, 0, 13, 0
Offset: 0

Views

Author

Clark Kimberling, Jul 05 2009

Keywords

Comments

For a signed version of this triangle corresponding to the row reversed version of the triangle A127672 see A244422. - Wolfdieter Lang, Aug 07 2014
The row reversed triangle is A114525. - Paolo Bonzini, Jun 23 2016

Examples

			Triangle begins
   2;  == 2
   1, 0;  == x + 0
   1, 0,  2;  == x^2 + 2
   1, 0,  3, 0;  == x^3 + 3*x + 0
   1, 0,  4, 0,  2;
   1, 0,  5, 0,  5, 0;
   1, 0,  6, 0,  9, 0,  2;
   1, 0,  7, 0, 14, 0,  7, 0;
   1, 0,  8, 0, 20, 0, 16, 0,  2;
   1, 0,  9, 0, 27, 0, 30, 0,  9, 0;
   1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2;
   ...
From _Wolfdieter Lang_, Aug 07 2014: (Start)
The row polynomials R(n, x) are:
  R(0, x) = 2, R(1, x) = 1 =   x*P(1,1/x),  R(2, x) = 1 + 2*x^2 = x^2*P(2,1/x), R(3, x) = 1 + 3*x^2 = x^3*P(3,1/x), ...
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Reverse[CoefficientList[LucasL[n, x], x]], {n, 0, 12}]//Flatten  (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    P(n)=
    {
        local(U, L, d, r, x);
        if ( n<0, return(0) );
        x = 'x+O('x^(n+1));
        d=(4 + x^2)^(1/2);
        U=(x+d)/2;  L=(x-d)/2;
        r = U^n+L^n;
        r = truncate(r);
        return( r );
    }
    for (n=0, 10, print(Vec(P(n))) ); /* show triangle */
    /* Joerg Arndt, Jul 24 2011 */

Formula

P(n,x) = x*P(n-1,x) + P(n-2,x) for n >= 2, P(0,x) = 2, P(1,x) = x.
From Wolfdieter Lang, Aug 07 2014: (Start)
T(n,m) = [x^(n-m)] P(n,x), m = 0, 1, ..., n and n >= 0.
G.f. of polynomials P(n,x): (2 - x*z)/(1 - x*z - z^2).
G.f. of row polynomials R(n,x) = Sum_{m=0..n} T(n,m)*x^m: (2 - z)/(1 - z - (x*z)^2) (rows for P(n,x) reversed).
(End)
For n > 0, T(n,2*m+1) = 0, T(n,2*m) = A034807(n,m). - Paolo Bonzini, Jun 23 2016

Extensions

Name clarified by Wolfdieter Lang, Aug 07 2014

A162516 Triangle of coefficients of polynomials defined by Binet form: P(n,x) = ((x+d)^n + (x-d)^n)/2, where d=sqrt(x+4).

Original entry on oeis.org

1, 1, 0, 1, 1, 4, 1, 3, 12, 0, 1, 6, 25, 8, 16, 1, 10, 45, 40, 80, 0, 1, 15, 75, 121, 252, 48, 64, 1, 21, 119, 287, 644, 336, 448, 0, 1, 28, 182, 588, 1457, 1360, 1888, 256, 256, 1, 36, 270, 1092, 3033, 4176, 6240, 2304, 2304, 0, 1, 45, 390, 1890, 5925, 10801, 17780, 11680, 12160, 1280, 1024
Offset: 0

Views

Author

Clark Kimberling, Jul 05 2009

Keywords

Examples

			First six rows:
  1;
  1,  0;
  1,  1,  4;
  1,  3, 12,  0;
  1,  6, 25,  8, 16;
  1, 10, 48, 40, 80, 0;
		

Crossrefs

For fixed k, the sequences P(n,k), for n=1,2,3,4,5, are A084057, A084059, A146963, A081342, A081343, respectively.

Programs

  • Magma
    m:=12;
    p:= func< n,x | ((x+Sqrt(x+4))^n + (x-Sqrt(x+4))^n)/2 >;
    R:=PowerSeriesRing(Rationals(), m+1);
    T:= func< n,k | Coefficient(R!( p(n,x) ), n-k) >;
    [T(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Jul 09 2023
    
  • Mathematica
    P[n_, x_]:= P[n, x]= ((x+Sqrt[x+4])^n + (x-Sqrt[x+4])^n)/2;
    T[n_, k_]:= Coefficient[Series[P[n, x], {x,0,n-k+1}], x, n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 08 2020; Jul 09 2023 *)
  • SageMath
    def p(n,x): return ((x+sqrt(x+4))^n + (x-sqrt(x+4))^n)/2
    def T(n,k):
        P. = PowerSeriesRing(QQ)
        return P( p(n,x) ).list()[n-k]
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 09 2023

Formula

P(n,x) = 2*x*P(n-1,x) - (x^2 -x -4)*P(n-2,x).
From G. C. Greubel, Jul 09 2023: (Start)
T(n, k) = [x^(n-k)] ( ((x+sqrt(x+4))^n + (x-sqrt(x+4))^n)/2 ).
T(n, 1) = A000217(n-1), n >= 1.
T(n, n) = A199572(n).
Sum_{k=0..n} T(n, k) = A084057(n).
Sum_{k=0..n} 2^k*T(n, k) = A125818(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A026150(n).
Sum_{k=0..n} (-2)^k*T(n, k) = A133343(n). (End)

A192382 Coefficient of x in the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 2, 4, 24, 80, 352, 1344, 5504, 21760, 87552, 349184, 1398784, 5591040, 22372352, 89473024, 357924864, 1431633920, 5726666752, 22906404864, 91626143744, 366503526400, 1466016202752, 5864060616704, 23456250855424, 93824986644480
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d = sqrt(x+2). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+2, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0, x) = 1 -> 1.
  p(1, x) = 2*x -> 2*x.
  p(2, x) = 2 + x + 3*x^2 -> 8 + 4*x.
  p(3, x) = 8*x + 4*x^2 + 4*x^3 -> 16 + 24*x.
  p(4, x) = 4 + 4*x + 21*x^2 + 10*x^3 + 5*x^4 -> 96 + 80*x.
From these, read A083086 = (1, 0, 9, 16, 96, ...) and A192382 =(0, 2, 4, 24, 80, ...).
		

Crossrefs

Programs

  • Magma
    [(4^(n-1) - (-2)^(n-1))/3: n in [1..40]]; // G. C. Greubel, Feb 19 2023
    
  • Maple
    seq(4^n*(1-(-1/2)^n)/3, n=0..24); # Peter Luschny, Oct 02 2019
  • Mathematica
    q[x_]:= x+2; d= Sqrt[x+2];
    p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2 d); (* suggested by A162517 *)
    Table[Expand[p[n, x]], {n, 6}]
    reductionRules= {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x*q[x]^((y- 1)/2)};
    t = Table[FixedPoint[Expand[#1/. reductionRules] &, p[n,x]], {n,30}];
    Table[Coefficient[Part[t,n], x, 0], {n,30}] (* abs value of A083086 *)
    Table[Coefficient[Part[t,n], x, 1], {n,30}] (* 2*A003683 *)
    Table[Coefficient[Part[t,n]/2, x, 1], {n,30}] (* A003683 *)
    LinearRecurrence[{2,8}, {0,2}, 40] (* G. C. Greubel, Feb 19 2023 *)
  • SageMath
    [(4^(n-1) - (-2)^(n-1))/3 for n in range(1,41)] # G. C. Greubel, Feb 19 2023

Formula

Conjectures from Colin Barker, May 12 2014: (Start)
a(n) = 2^(n-2)*(2*(-1)^n + 2^n)/3 = 2*A003683(n-1).
a(n) = 2*a(n-1) + 8*a(n-2).
G.f.: 2*x^2 / ((1+2*x)*(1-4*x)). (End).
a(n) = 4^n*(1 - (-1/2)^n)/3. - Peter Luschny, Oct 02 2019
E.g.f: (1/3)*(2 + exp(2*x))*(sinh(x))^2. - G. C. Greubel, Feb 19 2023

A163762 Triangle of coefficients of polynomials H(n,x)=(U^n+L^n)/2+(U^n-L^n)/(2d), where U=x+d, L=x-d, d=(x+4)^(1/2).

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 1, 6, 13, 4, 1, 10, 29, 24, 16, 1, 15, 55, 81, 88, 16, 1, 21, 95, 207, 300, 144, 64, 1, 28, 154, 448, 813, 684, 496, 64, 1, 36, 238, 868, 1913, 2352, 2272, 768, 256, 1, 45, 354, 1554, 4077, 6625, 7984, 4704, 2560, 256, 1, 55, 510, 2622, 8061, 16283
Offset: 1

Views

Author

Clark Kimberling, Aug 04 2009

Keywords

Comments

H(n,x)=P(n,x)+Q(n,x), where P and Q are given by A162516, A162517.
H(n,0)=4^Floor(n/2) for n=0,1,2,...
H(n,1)=A063727(n); row sums
(Column 2)=A000217 (triangular numbers)

Examples

			First six rows:
1
1...1
1...3...4
1...6..13...4
1..10..29..24..16
1..15..55..81..88..16
Row 6 represents x^5+15*x^4+55*x^3+81*x^2+88*x+16.
		

Crossrefs

Formula

H(n,x)=2*x*H(n-1,x)-(x^2-x-4)*H(n-2,x), where H(0,x)=1, H(1,x)=x+1.
H(n,x)=(1+1/d)*U^n+(1-1/d)*L^n, where U=x+d, L=x-d, d=(x+4)^(1/2).

A192376 Constant term of the reduction by x^2->x+2 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 0, 7, 16, 73, 256, 975, 3616, 13521, 50432, 188247, 702512, 2621849, 9784832, 36517535, 136285248, 508623521, 1898208768, 7084211623, 26438637648, 98670339049, 368242718464, 1374300534895, 5128959421024, 19141537149297, 71437189176064
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+1). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=4+x+3x^2 -> 7+4x
p(3,x)=16x+4x^2+4x^3 -> 16+20x
p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 73+68x.
From these, read A192376=(1,0,7,16,73,...) and A192377=(0,2,4,20,68,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 2; d = Sqrt[x + 1];
    p[n_, x_] := ((x + d)^n - (x - d)^ n )/(2 d)   (* Cf. A162517 *)
    Table[Expand[p[n, x]], {n, 1, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1,  30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192376 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192377 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192378 *)

Formula

Conjecture: a(n) = 2*a(n-1)+6*a(n-2)+2*a(n-3)-a(n-4). G.f.: x*(x-1)^2 / ((x+1)^2*(x^2-4*x+1)). - Colin Barker, May 11 2014

A192379 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 0, 5, 8, 45, 128, 505, 1680, 6089, 21120, 74909, 262680, 926485, 3258112, 11474865, 40382752, 142171985, 500432640, 1761656821, 6201182760, 21829269181, 76841888640, 270495370025, 952182350768, 3351823875225, 11798909226368
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+2). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=2+x+3x^2 -> 5+4x
p(3,x)=8x+4x^2+4x^3 -> 8+20x
p(4,x)=4+4x+21x^2+10x^3+5x^4 -> 45+60x.
From these, read A192379=(1,0,5,8,45,...) and A192380=(0,2,4,20,60,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = Sqrt[x + 2];
    p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d)   (* Cf. A162517 *)
    Table[Expand[p[n, x]], {n, 1, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]   (* A192379 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]   (* A192380 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}]   (* A192381 *)

Formula

Conjecture: a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: -x*(x^2+2*x-1) / (x^4+2*x^3-6*x^2-2*x+1). - Colin Barker, May 11 2014

A192383 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 0, 6, 8, 60, 160, 744, 2496, 10064, 36480, 140512, 522624, 1983168, 7439360, 28091520, 105674752, 398391552, 1500057600, 5652182528, 21288560640, 80200784896, 302101094400, 1138045495296, 4286942363648, 16149041172480, 60833034895360
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d=sqrt(x+3). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0, x) = 1 -> 1
  p(1, x) =     2*x -> 2*x
  p(2, x) = 3 +   x +  3*x^2 -> 6 + 4*x
  p(3, x) =    12*x +  4*x^2 +  4*x^3 -> 8 + 24*x
  p(4, x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 60 + 72*x.
From these, read A192383 = (1, 0, 6, 8, 60, ...) and A192384 = (0, 2, 4, 24, 72, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41);
    Coefficients(R!( x*(1-2*x-2*x^2)/(1-2*x-8*x^2+4*x^3+4*x^4) )) // G. C. Greubel, Jul 10 2023
    
  • Mathematica
    q[x_]:= x+1; d= Sqrt[x+3];
    p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2*d); (* suggested by A162517 *)
    Table[Expand[p[n, x]], {n,6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}];
    Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192383 *)
    Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192384 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n,30}] (* A192385 *)
    LinearRecurrence[{2,8,-4,-4}, {1,0,6,8}, 40] (* G. C. Greubel, Jul 10 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192383
        if (n<5): return (0,1,0,6,8)[n]
        else: return 2*a(n-1) +8*a(n-2) -4*a(n-3) -4*a(n-4)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023

Formula

From Colin Barker, May 11 2014: (Start)
a(n) = 2*a(n-1) + 8*a(n-2) - 4*a(n-3) - 4*a(n-4).
G.f.: x*(1-2*x-2*x^2)/(1-2*x-8*x^2+4*x^3+4*x^4). (End)
From G. C. Greubel, Jul 10 2023: (Start)
T(n, k) = [x^k] ((x+sqrt(x+3))^n - (x-sqrt(x+3))^n)/(2*sqrt(x+3)).
a(n) = Sum_{k=0..n-1} T(n, k)*Fibonacci(k-1). (End)
Showing 1-10 of 11 results. Next