A192373 Constant term in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.
1, 0, 7, 8, 77, 192, 1043, 3472, 15529, 57792, 240655, 934808, 3789653, 14963328, 60048443, 238578976, 953755537, 3798340224, 15162325975, 60438310184, 241126038941, 961476161856, 3835121918243, 15294304429744, 61000836720313, 243280700771904
Offset: 1
Keywords
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x)=1 -> 1 p(1,x)=2x -> 2x p(2,x)=4+x+3x^2 -> 7+4x p(3,x)=16x+4x^2+4x^3 -> 8+28x p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 77+84x. From these, read A192352=(1,0,7,8,77,...) and A049602=(0,2,4,28,84,...).
Programs
-
Mathematica
q[x_] := x + 1; d = Sqrt[x + 4]; p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* A162517 *) Table[Expand[p[n, x]], {n, 1, 6}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192373 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192374 *) Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192375 *)
Formula
Conjecture: a(n) = 2*a(n-1)+10*a(n-2)-6*a(n-3)-9*a(n-4). G.f.: -x*(x+1)*(3*x-1) / (9*x^4+6*x^3-10*x^2-2*x+1). - Colin Barker, May 09 2014
Comments