cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A166469 Number of divisors of n which are not multiples of consecutive primes.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 3, 5, 2, 4, 2, 6, 4, 4, 2, 5, 3, 4, 4, 6, 2, 5, 2, 6, 4, 4, 3, 5, 2, 4, 4, 8, 2, 6, 2, 6, 4, 4, 2, 6, 3, 6, 4, 6, 2, 5, 4, 8, 4, 4, 2, 7, 2, 4, 6, 7, 4, 6, 2, 6, 4, 6, 2, 6, 2, 4, 4, 6, 3, 6, 2, 10, 5, 4, 2, 8, 4, 4, 4, 8, 2, 6, 4, 6, 4, 4, 4, 7, 2, 6, 6, 9, 2, 6, 2, 8, 5
Offset: 1

Views

Author

Matthew Vandermast, Nov 05 2009

Keywords

Comments

Links various subsequences of A025487 with an unusual number of important sequences, including the Fibonacci, Lucas, and other generalized Fibonacci sequences (see cross-references).
If a number is a product of any number of consecutive primes, the number of its divisors which are not multiples of n consecutive primes is always a Fibonacci n-step number. See also A073485, A167447.

Examples

			Since 3 of 30's 8 divisors (6, 15, and 30) are multiples of 2 or more consecutive primes, a(30) = 8 - 3 = 5.
		

Crossrefs

A(A002110(n)) = A000045(n+2); A(A097250(n)) = A000032(n+1). For more relationships involving Fibonacci and Lucas numbers, see A166470-A166473, comment on A081341.
A(A061742(n)) = A001045(n+2); A(A006939(n)) = A000085(n+1); A(A212170(n)) = A000142(n+1). A(A066120(n)) = A166474(n+1).

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, FreeQ[Differences@ PrimePi@ FactorInteger[#][[All, 1]], 1] &] &, 105] (* Michael De Vlieger, Dec 16 2017 *)
  • PARI
    A296210(n) = { if(1==n,return(0)); my(ps=factor(n)[,1], pis=vector(length(ps),i,primepi(ps[i])), diffsminusones = vector(length(pis)-1,i,(pis[i+1]-pis[i])-1)); !factorback(diffsminusones); };
    A166469(n) = sumdiv(n,d,!A296210(d)); \\ Antti Karttunen, Dec 15 2017

Formula

a) If n has no prime gaps in its factorization (cf. A073491), then, if the canonical factorization of n into prime powers is the product of p_i^(e_i), a(n) is the sum of all products of one or more nonadjacent exponents, plus 1. For example, if A001221(n) = 3, a(n) = e_1*e_3 + e_1 + e_2 + e_3 + 1. If A001221(n) = k, the total number of terms always equals A000045(k+2).
The answer can also be computed in k steps, by finding the answers for the products of the first i powers, for i = 1 to i = k. Let the result of the i-th step be called r(i). r(1) = e_1 + 1; r(2) = e_1 + e_2 +1; for i > 2, r(i) = r(i-1) + e_i * r(i-2).
b) If n has prime gaps in its factorization, express it as a product of the minimum number of A073491's members possible. Then apply either of the above methods to each of those members, and multiply the results to get a(n). a(n) = A000005(n) iff n has no pair of consecutive primes as divisors.
a(n) = Sum_{d|n} (1-A296210(d)). - Antti Karttunen, Dec 15 2017

Extensions

Edited by Matthew Vandermast, May 24 2012

A055372 Invert transform of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 4, 12, 12, 4, 8, 32, 48, 32, 8, 16, 80, 160, 160, 80, 16, 32, 192, 480, 640, 480, 192, 32, 64, 448, 1344, 2240, 2240, 1344, 448, 64, 128, 1024, 3584, 7168, 8960, 7168, 3584, 1024, 128, 256, 2304, 9216, 21504, 32256, 32256, 21504, 9216, 2304, 256
Offset: 0

Views

Author

Christian G. Bower, May 16 2000

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
T(n,k) is the number of nonempty bit strings with n bits and exactly k 1's over all strings in the sequence. For example, T(2,1)=4 because we have {(01)},{(10)},{(0),(1)},{(1),(0)}. - Geoffrey Critzer, Apr 06 2013

Examples

			Triangle begins:
  1;
  1,  1;
  2,  4,  2;
  4, 12, 12,  4;
  8, 32, 48, 32,  8;
  ...
		

Crossrefs

Row sums give A081294. Cf. A000079, A007318, A055373, A055374.
Cf. A134309.
T(2n,n) gives A098402.

Programs

  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];a=(x+y x)/(1-(x+y x));Map[f,CoefficientList[Series[1/(1-a),{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Apr 06 2013 *)

Formula

a(n,k) = 2^(n-1)*C(n, k), for n>0.
G.f.: A(x, y)=(1-x-xy)/(1-2x-2xy).
As an infinite lower triangular matrix, equals A134309 * A007318. - Gary W. Adamson, Oct 19 2007
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A081294(n), A081341(n), A092811(n), A093143(n), A067419(n) for x = -1, 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Feb 05 2012

A134309 Triangle read by rows, where row n consists of n zeros followed by 2^(n-1).

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 512, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2048, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gary W. Adamson, Oct 19 2007

Keywords

Comments

As infinite lower triangular matrices, binomial transform of A134309 = A082137. A134309 * A007318 = A055372. A134309 * [1,2,3,...] = A057711: (1, 2, 6, 16, 40, 96, 224,...).
Triangle read by rows given by [0,0,0,0,0,0,0,0,...] DELTA [1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 20 2007

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 0, 4;
  0, 0, 0, 0, 8;
  0, 0, 0, 0, 0, 16;
  ...
		

Crossrefs

Cf. A011782 (diagonal elements: 1 followed by 1, 2, 4, 8, ... = A000079: 2^n).

Programs

  • Mathematica
    Join[{1},Flatten[Table[Join[{PadRight[{},n],2^(n-1)}],{n,20}]]] (* Harvey P. Dale, Jan 04 2024 *)
  • PARI
    A134309(r,c)=if(r==c,2^max(r-1,0),0) \\ M. F. Hasler, Mar 29 2022

Formula

Triangle, T(0,0) = 1, then for n > 0, n zeros followed by 2^(n-1). Infinite lower triangular matrix with (1, 1, 2, 4, 8, 16, ...) in the main diagonal and the rest zeros.
G.f.: (1 - y*x)/(1 - 2*y*x). - Philippe Deléham, Feb 04 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A081294(n), A081341(n), A092811(n), A093143(n), A067419(n) for x = 0, 1, 2, 3, 4, 5, 6 respectively. - Philippe Deléham, Feb 04 2012
Diagonal is A011782, other elements are 0. - M. F. Hasler, Mar 29 2022

A034494 a(n) = (7^n+1)/2.

Original entry on oeis.org

1, 4, 25, 172, 1201, 8404, 58825, 411772, 2882401, 20176804, 141237625, 988663372, 6920643601, 48444505204, 339111536425, 2373780754972, 16616465284801, 116315256993604, 814206798955225, 5699447592686572, 39896133148806001, 279272932041642004
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A081341. Inverse binomial transform of A081342. - R. J. Mathar, Oct 23 2008
Number of compositions of even natural numbers into n parts <=6. - Adi Dani, May 28 2011
From Charlie Marion, Jun 24 2011: (Start)
a(n)+(a(n)+1)+...+(a(n+1)-7^n-1)=(a(n+1)-7^n)+...+(a(n+1)-1). Let S(2n) and S(2n+1) be the sets of addends on the left- and right-hand sides, respectively, of the preceding equations. Then, since the intersection of any 2 different S(i) is null and the union of all of them is the positive integers, {S(i)} forms a partition of the positive integers. See also A034659.
In general, for k>0, let b(n)=((4k+3)^n+1)/2. Then b(n)+(b(n)+1)+ ... +(b(n+1)-(4k+3)^n-1)=k*((b(n+1)-(4k+3)^n)+ ... +(b(n+1)-1)). Then, for each k, the set of addends on the two sides of these equations also forms a partition of the positive integers. Also, with b(0)=1, b(n)=(4k+3)*b(n-1)-(2k+1).
For k>0, let c(0)=1 and, for n>0, c(n)=(2*(2k+1))^n/2. Then the sequence b(0),b(1),... is the binomial transform of the sequence c(0),c(1),....
For k>0, let d(2n)=(2k+1)^(2n) and d(2n+1)=0. Then the sequence b(0),b(1),... is the (2k+2)nd binomial transform of the sequence d(0),d(1),.... (End)

Examples

			From _Adi Dani_, May 28 2011: (Start)
a(2)=25: there are 25 compositions of even numbers into 2 parts <=6:
  (0,0)
  (0,2),(2,0),(1,1)
  (0,4),(4,0),(1,3),(3,1),(2,2)
  (0,6),(6,0),(1,5),(5,1),(2,4),(4,2),(3,3)
  (2,6),(6,2),(3,5),(5,3),(4,4)
  (4,6),(6,4),(5,5)
  (6,6)
(End)
		

Programs

Formula

E.g.f.: exp(4*x)*cosh(3*x). - Paul Barry, Apr 20 2003
a(n) = 7*a(n-1) - 3, a(0) = 1.
G.f.: (1-4*x)/((1-x)*(1-7*x)). - Philippe Deléham, Jul 11 2005
a(n) = 8*a(n-1)-7*a(n-2), a(0)=1, a(1)=4. - Philippe Deléham, Nov 15 2008
a(n) = ((4+sqrt(9))^n+(4-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008

A169604 a(n) = 3*6^n.

Original entry on oeis.org

3, 18, 108, 648, 3888, 23328, 139968, 839808, 5038848, 30233088, 181398528, 1088391168, 6530347008, 39182082048, 235092492288, 1410554953728, 8463329722368, 50779978334208, 304679870005248, 1828079220031488, 10968475320188928, 65810851921133568, 394865111526801408
Offset: 0

Views

Author

Klaus Brockhaus, Apr 04 2010

Keywords

Comments

a(n) = A081341(n+1).
Essentially first differences of A125682.
Binomial transform of A005053 without initial term 1.
Second binomial transform of A164346.
Inverse binomial transform of A169634.
Second inverse binomial transform of A103333 without initial term 1.
Contribution from Reinhard Zumkeller, May 02 2010: (Start)
a(n) = 3*A000400(n) = A000400(n+1)/2;
subsequence of A003586; a(n)=A003586(A014105(n)) for n<6. (End)

Crossrefs

Cf. A081341, A125682 ((6^n-1)*3/5), A005053 (expand (1-2x)/(1-5x)), A164346 (3*4^n), A169634 (3*7^n), A103333 (expand (1-5x)/(1-8x)).

Programs

Formula

a(n) = 6*a(n-1) for n > 0; a(0) = 3.
G.f.: 3/(1-6*x).

A081340 (5^n+(-1)^n)/2.

Original entry on oeis.org

1, 2, 13, 62, 313, 1562, 7813, 39062, 195313, 976562, 4882813, 24414062, 122070313, 610351562, 3051757813, 15258789062, 76293945313, 381469726562, 1907348632813, 9536743164062, 47683715820313, 238418579101562
Offset: 0

Views

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A003665. 2nd binomial transform of (1,0,9,0,81,0,729,0,..). Case k=2 of family of recurrences a(n)=2k*a(n-1)-(k^2-9)*a(n-2), a(0)=0, a(1)=k. A003665 is case k=1.

Crossrefs

Programs

Formula

a(n) = 4*a(n-1) + 5*a(n-2), a(0)=1, a(1)=2.
G.f.: (1-2*x)/((1+x)*(1-5*x)).
E.g.f.: exp(2*x) * cosh(3*x).
a(n) = ((2+sqrt(9))^n+(2-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = sum( k=0..n, A201730(n,k)*8^k ). - Philippe Deléham, Dec 06 2011

A100852 Triangle read by rows: T(n,k) = 2^k * 3^n, 0 <= k <= n.

Original entry on oeis.org

1, 3, 6, 9, 18, 36, 27, 54, 108, 216, 81, 162, 324, 648, 1296, 243, 486, 972, 1944, 3888, 7776, 729, 1458, 2916, 5832, 11664, 23328, 46656, 2187, 4374, 8748, 17496, 34992, 69984, 139968, 279936, 6561, 13122, 26244, 52488, 104976, 209952, 419904, 839808
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2004

Keywords

Comments

T(n,0) = A000244(n); T(n,n) = A000400(n) = A100851(n,n);
T(n,1) = A008776(n) for n>0;
T(n,2) = A003946(n+1) for n>1;
T(n,3) = A005051(n+1) for n>2;
T(n,n-1) = A081341(n+1) for n>0;
row sums give A016137.

Examples

			Triangle begins:
   1;
   3,   6;
   9,  18,  36;
  27,  54, 108, 216;
  81, 162, 324, 648, 1296;
...
		

Crossrefs

Cf. A100851, A003586, A065333(T(n, k))=1.

Programs

  • Mathematica
    Table[2^k*3^n, {n, 0, 140}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 06 2017 *)
  • PARI
    for(n=0, 8, for(k=0, n, print1(2^k*3^n", "))) \\ Satish Bysany, Mar 06 2017

Formula

G.f.: 1/((1 - 3*x)(1 - 6*x*y)). - Ilya Gutkovskiy, Jun 03 2017

A191347 Array read by antidiagonals: ((floor(sqrt(n)) + sqrt(n))^k + (floor(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 1, 1, 0, 8, 7, 4, 2, 1, 0, 16, 17, 10, 8, 2, 1, 0, 32, 41, 28, 32, 9, 2, 1, 0, 64, 99, 76, 128, 38, 10, 2, 1, 0, 128, 239, 208, 512, 161, 44, 11, 2, 1, 0, 256, 577, 568, 2048, 682, 196, 50, 12, 3, 1
Offset: 0

Views

Author

Charles L. Hohn, May 31 2011

Keywords

Examples

			1, 0,  0,   0,    0,    0,     0,      0,       0,        0,        0, ...
1, 1,  2,   4,    8,   16,    32,     64,     128,      256,      512, ...
1, 1,  3,   7,   17,   41,    99,    239,     577,     1393,     3363, ...
1, 1,  4,  10,   28,   76,   208,    568,    1552,     4240,    11584, ...
1, 2,  8,  32,  128,  512,  2048,   8192,   32768,   131072,   524288, ...
1, 2,  9,  38,  161,  682,  2889,  12238,   51841,   219602,   930249, ...
1, 2, 10,  44,  196,  872,  3880,  17264,   76816,   341792,  1520800, ...
1, 2, 11,  50,  233, 1082,  5027,  23354,  108497,   504050,  2341691, ...
1, 2, 12,  56,  272, 1312,  6336,  30592,  147712,   713216,  3443712, ...
1, 3, 18, 108,  648, 3888, 23328, 139968,  839808,  5038848, 30233088, ...
1, 3, 19, 117,  721, 4443, 27379, 168717, 1039681,  6406803, 39480499, ...
1, 3, 20, 126,  796, 5028, 31760, 200616, 1267216,  8004528, 50561600, ...
1, 3, 21, 135,  873, 5643, 36477, 235791, 1524177,  9852435, 63687141, ...
1, 3, 22, 144,  952, 6288, 41536, 274368, 1812352, 11971584, 79078912, ...
1, 3, 23, 153, 1033, 6963, 46943, 316473, 2133553, 14383683, 96969863, ...
...
		

Crossrefs

Row 1 is A000007, row 2 is A011782, row 3 is A001333, row 4 is A026150, row 5 is A081294, row 6 is A001077, row 7 is A084059, row 8 is A108851, row 9 is A084128, row 10 is A081341, row 11 is A005667, row 13 is A141041.
Row 3*2 is A002203, row 4*2 is A080040, row 5*2 is A155543, row 6*2 is A014448, row 8*2 is A080042, row 9*2 is A170931, row 11*2 is A085447.
Cf. A191348 which uses ceiling() in place of floor().

Programs

  • PARI
    T(n, k) = if (n==0, k==0, my(x=sqrtint(n)); sum(i=0, (k+1)\2, binomial(k, 2*i)*x^(k-2*i)*n^i));
    matrix(9,9, n, k, T(n-1,k-1)) \\ Michel Marcus, Aug 22 2019
    
  • PARI
    T(n, k) = if (k==0, 1, if (k==1, sqrtint(n), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
    matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 22 2019

Formula

For each row n>=0 let T(n,0)=1 and T(n,1)=floor(sqrt(n)), then for each column k>=2: T(n,k)=T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 22 2019
T(n, k) = Sum_{i=0..floor((k+1)/2)} binomial(k, 2*i)*floor(sqrt(n))^(k-2*i)*n^i for n > 0, with T(0, 0) = 1 and T(0, k) = 0 for k > 0. - Michel Marcus, Aug 23 2019

A191348 Array read by antidiagonals: ((ceiling(sqrt(n)) + sqrt(n))^k + (ceiling(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 2, 1, 0, 8, 20, 7, 2, 1, 0, 16, 68, 26, 8, 3, 1, 0, 32, 232, 97, 32, 14, 3, 1, 0, 64, 792, 362, 128, 72, 15, 3, 1, 0, 128, 2704, 1351, 512, 376, 81, 16, 3, 1, 0
Offset: 0

Views

Author

Charles L. Hohn, May 31 2011

Keywords

Examples

			1, 0,  0,   0,    0,     0,      0,      0,       0,        0,         0, ...
1, 1,  2,   4,    8,    16,     32,     64,     128,      256,       512, ...
1, 2,  6,  20,   68,   232,    792,   2704,    9232,    31520,    107616, ...
1, 2,  7,  26,   97,   362,   1351,   5042,   18817,    70226,    262087, ...
1, 2,  8,  32,  128,   512,   2048,   8192,   32768,   131072,    524288, ...
1, 3, 14,  72,  376,  1968,  10304,  53952,  282496,  1479168,   7745024, ...
1, 3, 15,  81,  441,  2403,  13095,  71361,  388881,  2119203,  11548575, ...
1, 3, 16,  90,  508,  2868,  16192,  91416,  516112,  2913840,  16450816, ...
1, 3, 17,  99,  577,  3363,  19601, 114243,  665857,  3880899,  22619537, ...
1, 3, 18, 108,  648,  3888,  23328, 139968,  839808,  5038848,  30233088, ...
1, 4, 26, 184, 1316,  9424,  67496, 483424, 3462416, 24798784, 177615776, ...
1, 4, 27, 196, 1433, 10484,  76707, 561236, 4106353, 30044644, 219825387, ...
1, 4, 28, 208, 1552, 11584,  86464, 645376, 4817152, 35955712, 268377088, ...
1, 4, 29, 220, 1673, 12724,  96773, 736012, 5597777, 42574180, 323800109, ...
1, 4, 30, 232, 1796, 13904, 107640, 833312, 6451216, 49943104, 386642400, ...
...
		

Crossrefs

Row 1 is A000007, row 2 is A011782, row 3 is A006012, row 4 is A001075, row 5 is A081294, row 6 is A098648, row 7 is A084120, row 8 is A146963, row 9 is A001541, row 10 is A081341, row 11 is A084134, row 13 is A090965.
Row 3*2 is A056236, row 4*2 is A003500, row 5*2 is A155543, row 9*2 is A003499.
Cf. A191347 which uses floor() in place of ceiling().

Programs

  • PARI
    T(n, k) = if (k==0, 1, if (k==1, ceil(sqrt(n)), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
    matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 23 2019

Formula

For each row n >= 0 let T(n,0)=1 and T(n,1) = ceiling(sqrt(n)), then for each column k >= 2: T(n,k) = T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 23 2019

A192396 Square array T(n, k) = floor(((k+1)^n - (1+(-1)^k)/2)/2) read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 4, 4, 2, 0, 0, 8, 13, 8, 2, 0, 0, 16, 40, 32, 12, 3, 0, 0, 32, 121, 128, 62, 18, 3, 0, 0, 64, 364, 512, 312, 108, 24, 4, 0, 0, 128, 1093, 2048, 1562, 648, 171, 32, 4, 0, 0, 256, 3280, 8192, 7812, 3888, 1200, 256, 40, 5, 0
Offset: 0

Views

Author

Adi Dani, Jun 29 2011

Keywords

Comments

T(n,k) is the number of compositions of odd natural numbers into n parts <=k.

Examples

			T(2,4)=12: there are 12 compositions of odd natural numbers into 2 parts <=4
  1: (0,1), (1,0);
  3: (1,2), (2,1), (0,3), (3,0);
  5: (1,4), (4,1), (2,3), (3,2);
  7: (3,4), (4,3).
The table starts
    0,  0,   0,   0,    0,    0, ... A000004;
    0,  1,   1,   2,    2,    3, ... A004526;
    0,  2,   4,   8,   12,   18, ... A007590;
    0,  4,  13,  32,   62,  108, ... A036487;
    0,  8,  40, 128,  312,  648, ... A191903;
    0, 16, 121, 512, 1562, 3888, ... A191902;
    .        .      .       .    ...
with columns: A000004, A000079, A003462, A004171, A128531, A081341, ... .
Antidiagonal triangle begins:
  0;
  0,  0;
  0,  1,   0;
  0,  2,   1,   0;
  0,  4,   4,   2,   0;
  0,  8,  13,   8,   2,   0;
  0, 16,  40,  32,  12,   3,  0;
  0, 32, 121, 128,  62,  18,  3,  0;
  0, 64, 364, 512, 312, 108, 24,  4,  0;
		

Crossrefs

Programs

  • Magma
    A192396:= func< n,k | Floor(((k+1)^n - (1+(-1)^k)/2)/2) >;
    [A192396(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2023
    
  • Maple
    A192396 := proc(n,k) (k+1)^n-(1+(-1)^k)/2 ; floor(%/2) ; end proc:
    seq(seq( A192396(d-k,k),k=0..d),d=0..10) ; # R. J. Mathar, Jun 30 2011
  • Mathematica
    T[n_, k_]:= Floor[((k+1)^n - (1+(-1)^k)/2)/2];
    Table[T[n-k,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A192396(n,k): return ((k+1)^n - ((k+1)%2))//2
    flatten([[A192396(n-k,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 11 2023
Showing 1-10 of 14 results. Next