cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A034491 a(n) = 7^n + 1.

Original entry on oeis.org

2, 8, 50, 344, 2402, 16808, 117650, 823544, 5764802, 40353608, 282475250, 1977326744, 13841287202, 96889010408, 678223072850, 4747561509944, 33232930569602, 232630513987208, 1628413597910450, 11398895185373144
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 7*a(n-1) - 6.
a(n) = 8*a(n-1) - 7*a(n-2).
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-7*x).
E.g.f.: exp(x) + exp(7*x). (End)
a(n) = 2*A034494(n). - G. C. Greubel, Mar 11 2023

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A198715 T(n,k)=Number of nXk 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 25, 25, 5, 14, 172, 401, 172, 14, 41, 1201, 6548, 6548, 1201, 41, 122, 8404, 107042, 250031, 107042, 8404, 122, 365, 58825, 1749965, 9548295, 9548295, 1749965, 58825, 365, 1094, 411772, 28609241, 364637102, 851787199, 364637102
Offset: 1

Author

R. H. Hardin, Oct 29 2011

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 4 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
....1........1............2...............5..................14
....1........4...........25.............172................1201
....2.......25..........401............6548..............107042
....5......172.........6548..........250031.............9548295
...14.....1201.......107042.........9548295...........851787199
...41.....8404......1749965.......364637102.........75987485516
..122....58825.....28609241.....13925032958.......6778819400772
..365...411772....467717288....531779578441.....604736581320925
.1094..2882401...7646461682..20307996787865...53948385378521909
.3281.20176804.125007943505.775536991678112.4812720805166620356
...
Some solutions with all values from 0 to 3 for n=6 k=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..2..1....0..1..0..1....0..1..0..1....0..1..0..2....0..1..0..1
..1..2..0..3....2..0..3..0....2..0..1..0....1..2..1..3....1..2..3..0
..2..0..2..0....1..3..0..2....3..2..0..2....0..3..0..2....3..1..2..3
..3..2..0..1....3..2..1..0....0..3..2..1....3..1..3..0....1..3..1..0
		

Crossrefs

Columns 1-7 are A007051(n-2), A034494(n-1), A198710, A198711, A198712, A198713, A198714.
Main diagonal is A198709.
Cf. A207997 (3 colorings), A222444 (labeled 4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

A081341 Expansion of exp(3*x)*cosh(3*x).

Original entry on oeis.org

1, 3, 18, 108, 648, 3888, 23328, 139968, 839808, 5038848, 30233088, 181398528, 1088391168, 6530347008, 39182082048, 235092492288, 1410554953728, 8463329722368, 50779978334208, 304679870005248, 1828079220031488, 10968475320188928, 65810851921133568
Offset: 0

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A081340. 3rd binomial transform of (1,0,9,0,81,0,729,0,...).
For m > 1, n > 0, A166469(A002110(m)*a(n)) = (n+1)*A000045(m+1). For n > 0, A166469(a(n)) = 2n. - Matthew Vandermast, Nov 05 2009
Number of compositions of even natural numbers in n parts <= 5. - Adi Dani, May 29 2011

Examples

			From _Adi Dani_, May 29 2011: (Start)
a(2)=18: there are 18 compositions of even natural numbers into 2 parts <= 5:
  for 0: (0,0);
  for 2: (0,2),(2,0),(1,1);
  for 4: (0,4),(4,0),(1,3),(3,1),(2,2);
  for 6: (1,5),(5,1),(2,4),(4,2),(3,3);
  for 8: (3,5),(5,3),(4,4);
  for 10: (5,5).  (End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(3^j*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2017
  • Mathematica
    Table[Ceiling[1/2(6^n)], {n, 0, 25}]
    CoefficientList[Series[-(-1 + 3 x)/(1 - 6 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
    Join[{1},NestList[6#&,3,30]] (* Harvey P. Dale, May 25 2019 *)
  • PARI
    x='x+O('x^66); /* that many terms */
    Vec((1-3*x)/(1-6*x)) /* show terms */ /* Joerg Arndt, May 29 2011 */

Formula

a(0)=1, a(n) = 6^n/2, n > 0.
G.f.: (1-3*x)/(1-6*x).
E.g.f.: exp(3*x)*cosh(3*x).
a(n) = A000244(n)*A011782(n). - Philippe Deléham, Dec 01 2008
a(n) = ((3+sqrt(9))^n + (3-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = Sum_{k=0..n} A134309(n,k)*3^k = Sum_{k=0..n} A055372(n,k)*2^k. - Philippe Deléham, Feb 04 2012
From Sergei N. Gladkovskii, Jul 19 2012: (Start)
a(n) = ((8*n-4)*a(n-1) - 12*(n-2)*a(n-2))/n, a(0)=1, a(1)=3.
E.g.f. (exp(6*x) + 1)/2 = 1 + 3*x/(G(0) - 6*x) where G(k) = 6*x + 1 + k - 6*x*(k+1)/G(k+1) (continued fraction, Euler's 1st kind, 1-step). (End)
"INVERT" transform of A000244. - Alois P. Heinz, Sep 22 2017

Extensions

Typo in A-number fixed by Klaus Brockhaus, Apr 04 2010

A214112 T(n,k)=Number of 0..3 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 1, 4, 4, 11, 25, 10, 111, 121, 172, 31, 670, 3502, 1331, 1201, 91, 4994, 44900, 110985, 14641, 8404, 274, 34041, 825105, 3008980, 3517864, 161051, 58825, 820, 241021, 12777541, 136579852, 201647240, 111505491, 1771561, 411772, 2461, 1678940
Offset: 1

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Table starts
....1.....1.......4........10..........31............91.............274
....4....11.....111.......670........4994.........34041..........241021
...25...121....3502.....44900......825105......12777541.......214404272
..172..1331..110985...3008980...136579852....4797577911....191154162535
.1201.14641.3517864.201647240.22615881851.1801391900581.170522196557894

Examples

			Some solutions for n=4 k=1
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..1..0....1..2....2..3....1..0....1..0....1..0....1..2....1..0....1..0....1..2
..0..1....0..1....3..1....0..1....2..3....2..1....3..0....0..2....2..3....3..1
..1..2....1..0....1..0....1..0....3..2....3..0....0..1....1..3....3..1....0..2
		

Crossrefs

Column 1 is A034494(n-1)
Column 2 is A001020(n-1)
Row 1 is A006342(n-1)

Formula

Empirical for column k:
k=1: a(n) = 8*a(n-1) -7*a(n-2)
k=2: a(n) = 11*a(n-1)
k=3: a(n) = 35*a(n-1) -107*a(n-2) +73*a(n-3)
k=4: a(n) = 68*a(n-1) -66*a(n-2)
k=5: a(n) = 200*a(n-1) -5769*a(n-2) +11744*a(n-3) +43057*a(n-4) -89856*a(n-5) +40625*a(n-6)
k=6: a(n) = 416*a(n-1) -15454*a(n-2) +89758*a(n-3) +90848*a(n-4) -438718*a(n-5) +62801*a(n-6)
k=7: (order 15)
Empirical for row n:
n=1: a(k)=3*a(k-1)+a(k-2)-3*a(k-3)
n=2: a(k)=4*a(k-1)+22*a(k-2)-4*a(k-3)-21*a(k-4)
n=3: a(k)=11*a(k-1)+123*a(k-2)-509*a(k-3)-1615*a(k-4)+7137*a(k-5)-19*a(k-6)-20571*a(k-7)+13176*a(k-8)+13932*a(k-9)-11664*a(k-10)
n=4: (order 26)
n=5: (order 71)

A081342 a(n) = (8^n + 2^n)/2.

Original entry on oeis.org

1, 5, 34, 260, 2056, 16400, 131104, 1048640, 8388736, 67109120, 536871424, 4294968320, 34359740416, 274877911040, 2199023263744, 17592186060800, 140737488388096, 1125899906908160, 9007199254872064, 72057594038190080, 576460752303947776, 4611686018428436480
Offset: 0

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A034494.
5th binomial transform of {1, 0, 9, 0, 81, 0, 729, 0, ...}.

Crossrefs

Programs

Formula

a(n) = (8^n + 2^n)/2.
a(n) = 10*a(n-1) - 16*a(n-2), a(0)=1, a(1)=5.
G.f.: (1-5*x)/((1-2*x)*(1-8*x)).
E.g.f.: exp(5*x)*cosh(3*x).
a(n) = ((5+sqrt(9))^n + (5-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = A074603(n)/2. - Michel Marcus, Jan 09 2020

A003665 a(n) = 2^(n-1)*( 2^n + (-1)^n ).

Original entry on oeis.org

1, 1, 10, 28, 136, 496, 2080, 8128, 32896, 130816, 524800, 2096128, 8390656, 33550336, 134225920, 536854528, 2147516416, 8589869056, 34359869440, 137438691328, 549756338176, 2199022206976, 8796095119360, 35184367894528, 140737496743936, 562949936644096, 2251799847239680
Offset: 0

Keywords

Comments

Binomial transform of expansion of cosh(3*x), the aerated version of A001019, 1,0,9,0,81,0,729,... - Paul Barry, Apr 05 2003
Alternatively: start with the fraction 1/1, take the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 9 times the bottom to get the new top. The limit of the sequence of fractions used to generate this sequence is sqrt(9). - Cino Hilliard, Sep 25 2005
This sequence also gives the number of ordered pairs of subsets (A, B) of {1, 2, ..., n} such that |A u B| is even. (Here "u" stands for the set-theoretic union.) The special case n = 13 can be found as in CRUX Problem 3257. - Walther Janous (walther.janous(AT)tirol.com), Mar 01 2008
For n > 0, a(n) is term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 3,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 9 types of other natural numbers. - Milan Janjic, Aug 13 2010
a(n) = ((1+3)^n+(1-3)^n)/2. In general, if b(0),b(1),... is the k-th binomial transform of the sequence ((3^n+(-3)^n)/2), then b(n) = ((k+3)^n+(k-3)^n)/2. More generally, if b(0),b(1),... is the k-th binomial transform of the sequence ((m^n+(-m)^n)/2), then b(n) = ((k+m)^n+(k-m)^n)/2. See A034494, A081340-A081342, A034659. - Charlie Marion, Jun 25 2011
Pisano period lengths: 1, 1, 1, 1, 4, 1, 6, 1, 1, 4, 5, 1, 12, 6, 4, 1, 8, 1, 9, 4, ... - R. J. Mathar, Aug 10 2012
Starting with offset 1 the sequence is the INVERT transform of (1, 9, 9, 9, ...). - Gary W. Adamson, Aug 06 2016

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
  • M. Gardner, Riddles of Sphinx, M.A.A., 1987, p. 145.

Programs

  • GAP
    List([0..30], n-> 2^(n-1)*(2^n +(-1)^n)); # G. C. Greubel, Aug 02 2019
  • Magma
    [2^(n-1)*( 2^n + (-1)^n ): n in [0..30]]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A003665:=n->2^(n-1)*( 2^n + (-1)^n ): seq(A003665(n), n=0..30); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    CoefficientList[Series[(1+8x)/(1-2x-8x^2), {x,0,30}], x] (* or *)
    LinearRecurrence[{2,8}, {1,1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=2^(n-1)*( 2^n + (-1)^n );
    
  • Sage
    [2^(n-1)*(2^n +(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 02 2019
    

Formula

From Paul Barry, Mar 01 2003: (Start)
a(n) = 2*a(n-1) + 8*a(n-2), a(0)=a(1)=1.
a(n) = (4^n + (-2)^n)/2.
G.f.: (1-x)/((1+2*x)*(1-4*x)). (End)
From Paul Barry, Apr 05 2003: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*9^k.
E.g.f. exp(x)*cosh(3*x). (End)
a(n) = (A078008(n) + A001045(n+1))*2^(n-1) = A014551(n)*2^(n-1). - Paul Barry, Feb 12 2004
Given a(0)=1, b(0)=1 then for i=1, 2, ..., a(i)/b(i) = (a(i-1) + 9*b(i-1)) / (a(i-1) + b(i-1)). - Cino Hilliard, Sep 25 2005
a(n) = Sum_{k=0..n} A098158(n,k)*9^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = ((1+sqrt(9))^n + (1-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
If p[1]=1, and p[i]=9, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(9*k-1)/(x*(9*k+8) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013

Extensions

Entry revised by N. J. A. Sloane, Nov 22 2006

A206396 T(n,k)=Number of nXk 0..5 arrays with no element equal to another within a city block distance of two, and new values 0..5 introduced in row major order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 4, 4, 2, 5, 25, 26, 25, 5, 15, 172, 206, 206, 172, 15, 51, 1201, 1592, 1931, 1592, 1201, 51, 187, 8404, 12428, 16784, 16784, 12428, 8404, 187, 715, 58825, 96632, 151630, 170796, 151630, 96632, 58825, 715, 2795, 411772, 752552, 1343560
Offset: 1

Author

R. H. Hardin Feb 07 2012

Keywords

Comments

Table starts
...1.....1......1........2.........5.........15..........51..........187
...1.....1......4.......25.......172.......1201........8404........58825
...1.....4.....26......206......1592......12428.......96632.......752552
...2....25....206.....1931.....16784.....151630.....1343560.....12046648
...5...172...1592....16784....170796....1787258....18574298....193499878
..15..1201..12428...151630...1787258...21983256...268956972...3301485294
..51..8404..96632..1343560..18574298..268956972..3889732730..56960076094
.187.58825.752552.12046648.193499878.3301485294.56960076094.998388746378

Examples

			Some solutions for n=4 k=3
..0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2
..2..3..0....2..3..4....2..3..4....3..4..5....3..4..5....2..3..0....2..3..4
..1..4..5....1..0..5....4..5..1....5..0..1....1..0..3....4..5..1....1..5..0
..0..2..1....3..2..1....1..2..0....4..3..2....2..5..1....0..2..3....0..2..3
		

Crossrefs

Column 1 is A007581(n-3)
Column 2 is A034494(n-2)

A120741 a(n) = (7^n - 1)/2.

Original entry on oeis.org

0, 3, 24, 171, 1200, 8403, 58824, 411771, 2882400, 20176803, 141237624, 988663371, 6920643600, 48444505203, 339111536424, 2373780754971, 16616465284800, 116315256993603, 814206798955224, 5699447592686571, 39896133148806000
Offset: 0

Author

Gary W. Adamson, Jun 30 2006

Keywords

Comments

Number of compositions of odd natural numbers into n parts < 7. - Adi Dani, Jun 11 2011

Examples

			From _Adi Dani_, Jun 11 2011: (Start)
  a(2)=24: there are 24 compositions of odd numbers into 2 parts < 7:
  1: (0,1), (1,0);
  3: (0,3), (3,0), (1,2), (2,1);
  5: (0,5), (5,0), (1,4), (4,1), (2,3), (3,2);
  7: (1,6), (6,1), (2,5), (5,2), (3,4), (4,3);
  9: (3,6), (6,3), (4,5), (5,4);
  11: (5,6),(6,5).  (End)
a(4) = 1200 = A034494(4) - 1, where A034494(4) = 1201.
a(4) = 1200 = 8*a(3) - 7*a(2) = 8*171 - 7*24.
a(4) = 1200 = right term in M^n * [1,0] = [A034494(4), a(4)] = [1201, 1200].
		

Crossrefs

Cf. A034494.

Programs

Formula

a(n) = A034494(n) - 1.
a(n) = 8*a(n-1) - 7*a(n-2), n >= 2.
a(n) = right term in M^n * [1,0], where M is the 2 X 2 matrix [4,3; 3,4].
From G. C. Greubel, Nov 11 2022: (Start)
G.f.: 3*x/((1-x)*(1-7*x)).
E.g.f.: (1/2)*(exp(7*x) - exp(x)). (End)

Extensions

Complete edit by Joerg Arndt, Jun 11 2011

A147724 a(n) = C(3,n) DELTA C(0,n).

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 25, 33, 9, 1, 172, 238, 78, 13, 1, 1201, 1745, 667, 139, 17, 1, 8404, 12807, 5583, 1376, 216, 21, 1, 58825, 93841, 45822, 12950, 2429, 309, 25, 1, 411772, 686288, 370108, 117458, 25366, 3890, 418, 29, 1, 2882401, 5009889, 2951034, 1035834, 251583, 44607, 5823, 543, 33, 1
Offset: 0

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Triangle [1,3,3,1,0,0,0,...] DELTA [1,0,0,0,...] with Deléham DELTA as in A084938.
First column is A034494(n-1). Row sums are A147725. A147724 = A147723*A007318.

Examples

			Triangle begins
    1;
    1,   1;
    4,   5,   1;
   25,  33,   9,   1;
  172, 238,  78,  13,   1;
		

Crossrefs

Cf. A147721.

Programs

  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 7*x + 3*x^2)/(1 - 8*x + 7*x^2 - x*y + 4*x^2*y) , {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017 *)

Formula

Riordan array ((1-7*x+3*x^2)/(1-8*x+7*x^2), x*(1-4*x)/(1-8*x+7*x^2)).
G.f.: (1 - 7*x + 3*x^2)/(1 - 8*x + 7*x^2 - x*y + 4*x^2*y). - Philippe Deléham, Oct 29 2013
T(n,k) = 8*T(n-1,k) + T(n-1,k-1) - 7*T(n-2,k) - 4*T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 4, T(2,1) = 5, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 29 2013
Showing 1-10 of 11 results. Next