cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A137222 Partial sums of A087429.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 23, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 31, 32, 32, 33, 33, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 38, 39
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 07 2008

Keywords

Crossrefs

Cf. A087429.

Programs

Extensions

Terms beyond a(18) from R. J. Mathar, Jan 30 2010

A087430 Nonprimes n with gpf(n) > gpf(n+1), where gpf=A006530 (greatest prime factor).

Original entry on oeis.org

14, 15, 26, 34, 35, 38, 39, 44, 49, 51, 55, 62, 63, 65, 69, 74, 76, 80, 86, 87, 94, 95, 99, 104, 111, 116, 118, 119, 122, 123, 124, 129, 134, 142, 143, 146, 152, 153, 155, 158, 159, 161, 164, 174, 183, 185, 186, 188, 194, 195, 202, 203, 206, 207, 209, 214, 215
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 02 2003

Keywords

Comments

Subsequence of A070087.

Crossrefs

Cf. A087429.

Programs

  • Maple
    N:= 1000: # to get all terms < N
    V:= Vector(N):
    p:= 1:
    do
      p:= nextprime(p);
      if p > N then break fi;
      V[[seq(k*p,k=1..N/p)]]:= p
    od:
    select(t -> V[t] > V[t+1] and not isprime(t), [$1..N-1]); # Robert Israel, Jul 03 2018
  • Mathematica
    With[{nn=250},Select[Complement[Range[nn],Prime[Range[PrimePi[ nn]]]], FactorInteger[ #][[-1,1]]>FactorInteger[#+1][[-1,1]]&]] (* Harvey P. Dale, Jul 14 2016 *)

A359953 a(1) = 0, a(2) = 1. For n >= 3, if the greatest prime dividing n is greater than the greatest prime dividing n-1, then a(n) = a(n-1) + 1. Otherwise a(n) = a(n-1) - 1.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 5, 6, 7, 6, 5, 6, 5, 4, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 5, 6, 5, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3
Offset: 1

Views

Author

Tamas Sandor Nagy, Jan 19 2023

Keywords

Comments

The first negative value is at a(3888). Within the first 1000000 values are the negative record values a(n) = -4 at n = {3913, 3915, 3927, 3933}. - Thomas Scheuerle, Jan 20 2023

Examples

			a(5) = a(4) + 1 = 1 + 1 = 2 because A006530(5) = 5 > A006530(4) = 2.
		

Crossrefs

Programs

  • MATLAB
    function a = A359953(max_n)
        a = [0 cumsum(sign(diff([0 arrayfun(@(x)(max(factor(x))),[2:max_n])])))];
    end % Thomas Scheuerle, Jan 20 2023
    
  • Mathematica
    Join[{0}, Accumulate@ Sign@ Differences@ Table[FactorInteger[n][[-1, 1]], {n, 1, 100}]] (* Amiram Eldar, Jan 20 2023, after the MATLAB code *)
  • PARI
    lista(nn) = my(va = vector(nn)); va[1] = 0; va[2] = 1; for (n=3, nn, if (vecmax(factor(n)[,1]) > vecmax(factor(n-1)[,1]), va[n] = va[n-1] + 1, va[n] = va[n-1] - 1);); va; \\ Michel Marcus, Jan 31 2023

Formula

For n >= 2, if A006530(n) > A006530(n-1), then a(n) = a(n-1) + 1; a(n) = a(n-1) - 1 otherwise.
a(n) = (-1)*Sum_{i=1..n-1} (-1)^A087429(i).
a(1 + A070089(n)) = 1 + a(A070089(n)). - Thomas Scheuerle, Jan 20 2023
Showing 1-3 of 3 results.