A087451 G.f.: (2-x)/((1+2x)(1-3x)); e.g.f.: exp(3x)+exp(-2x); a(n)=3^n+(-2)^n.
2, 1, 13, 19, 97, 211, 793, 2059, 6817, 19171, 60073, 175099, 535537, 1586131, 4799353, 14316139, 43112257, 129009091, 387682633, 1161737179, 3487832977, 10458256051, 31385253913, 94134790219, 282446313697, 847255055011
Offset: 0
Links
- Drexel University, Generation X and Y
- G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2002.
- OEIS Wiki, Autosequence
- Index entries for linear recurrences with constant coefficients, signature (1,6)
Programs
-
Maple
for i from 0 to 20 do print(3^i+(-2)^i) od; # Gary Detlefs, Dec 20 2009
-
Mathematica
a[0] = 2; a[1] = 1; a[n_] := a[n] = a[n - 1] + 6a[n - 2]; a /@ Range[0, 25] (* Robert G. Wilson v, Feb 02 2006 *)
-
Sage
[lucas_number2(n,1,-6) for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
Formula
a(0) = 2, a(1) = 1, a(n) = a(n-1)+6a(n-2).
a(n) = 3^n + (-2)^n. - Gary Detlefs, Dec 20 2009
The sequence 1, 13, 19... is a(n+1) = 3*3^n-2*(-2)^n.
exp( Sum_{n >= 1} a(n)*x^n/n ) = Sum_{n >= 0} A015441(n+1)*x^n. - Peter Bala, Mar 30 2015
a(n) = 2*A015441(n+1) - A015441(n), a formula given by Paul Curtz for autosequences of the 2nd kind. - Jean-François Alcover, Jun 02 2017
Comments