cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087451 G.f.: (2-x)/((1+2x)(1-3x)); e.g.f.: exp(3x)+exp(-2x); a(n)=3^n+(-2)^n.

Original entry on oeis.org

2, 1, 13, 19, 97, 211, 793, 2059, 6817, 19171, 60073, 175099, 535537, 1586131, 4799353, 14316139, 43112257, 129009091, 387682633, 1161737179, 3487832977, 10458256051, 31385253913, 94134790219, 282446313697, 847255055011
Offset: 0

Views

Author

Paul Barry, Sep 06 2003

Keywords

Comments

Generalized Lucas-Jacobsthal numbers.
Pisano period lengths: 1, 1, 1, 2, 4, 1, 6, 2, 3, 4, 5, 2, 12, 6, 4, 4, 16, 3, 18, 4,... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Maple
    for i from 0 to 20 do print(3^i+(-2)^i) od; # Gary Detlefs, Dec 20 2009
  • Mathematica
    a[0] = 2; a[1] = 1; a[n_] := a[n] = a[n - 1] + 6a[n - 2]; a /@ Range[0, 25] (* Robert G. Wilson v, Feb 02 2006 *)
  • Sage
    [lucas_number2(n,1,-6) for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009

Formula

a(0) = 2, a(1) = 1, a(n) = a(n-1)+6a(n-2).
a(n) = 3^n + (-2)^n. - Gary Detlefs, Dec 20 2009
The sequence 1, 13, 19... is a(n+1) = 3*3^n-2*(-2)^n.
exp( Sum_{n >= 1} a(n)*x^n/n ) = Sum_{n >= 0} A015441(n+1)*x^n. - Peter Bala, Mar 30 2015
a(n) = 2*A015441(n+1) - A015441(n), a formula given by Paul Curtz for autosequences of the 2nd kind. - Jean-François Alcover, Jun 02 2017