cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A087491 Decimal expansion of the Khinchin harmonic mean K_{-1}.

Original entry on oeis.org

1, 7, 4, 5, 4, 0, 5, 6, 6, 2, 4, 0, 7, 3, 4, 6, 8, 6, 3, 4, 9, 4, 5, 9, 6, 3, 0, 9, 6, 8, 3, 6, 6, 1, 0, 6, 7, 2, 9, 4, 9, 3, 6, 6, 1, 8, 7, 7, 7, 9, 8, 4, 2, 5, 6, 5, 9, 5, 0, 1, 3, 7, 7, 3, 5, 1, 6, 0, 7, 8, 5, 7, 5, 2, 2, 0, 8, 7, 3, 4, 2, 5, 6, 5, 2, 0, 5, 7, 8, 8, 6, 4, 5, 6, 7, 8, 3, 2, 4, 2, 4, 2
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0 (A002210).

Examples

			1.7454056624073468634945963096836610672949366187...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.8, p. 61.

Crossrefs

Programs

  • Mathematica
    digits = 102; exactEnd = 1000; f[n_] = (1 - 1/(n + 1)^2)^(-1/n); s[n_] = Series[Log[f[n]], {n, Infinity, digits}] // Normal // N[#, digits] &; exactSum = Sum[Log[f[n]], {n, 1, exactEnd}] // N[#, digits] &; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits] &; A087491 = Log[2]/(exactSum + extraSum) // RealDigits // First  (* Jean-François Alcover, Feb 06 2013 *)
    RealDigits[Log[2]/NSum[Log[(1 - 1/(n + 1)^2)^(-1/n)], {n, Infinity}, NSumTerms -> 10^4, WorkingPrecision -> 250, PrecisionGoal -> 110]][[1, ;; 100]] (* Eric W. Weisstein, Dec 10 2017 *)

Formula

Equals (Sum_{n>=1} -log2(1 - 1/(n+1)^2) * n^(-1))^(-1). - Jianing Song, Aug 08 2021

A087500 Decimal expansion of Khinchin mean K_{-10}.

Original entry on oeis.org

1, 0, 9, 1, 8, 7, 7, 0, 4, 1, 2, 0, 9, 6, 1, 2, 6, 7, 8, 2, 7, 6, 1, 1, 0, 9, 7, 9, 4, 7, 7, 6, 3, 8, 2, 5, 6, 4, 9, 3, 2, 7, 2, 6, 5, 1, 4, 2, 9, 6, 5, 6, 2, 7, 2, 7, 1, 0, 7, 5, 4, 9, 1, 3, 5, 6, 9, 7, 3, 5, 1, 3, 9, 7, 0, 7, 2, 9, 8, 9, 0, 6, 3, 3, 6, 6, 6, 5, 3, 0, 6, 6, 5, 4, 4, 9, 4, 0, 9, 2
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0.

Examples

			1.09187704...
		

Crossrefs

Programs

  • Mathematica
    m = 10; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 14 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 14 2013

A087492 Decimal expansion of Khinchin mean K_{-2}.

Original entry on oeis.org

1, 4, 5, 0, 3, 4, 0, 3, 2, 8, 4, 9, 5, 6, 3, 0, 4, 0, 6, 0, 5, 2, 9, 8, 3, 0, 7, 6, 6, 8, 0, 6, 9, 7, 8, 8, 1, 4, 0, 8, 2, 9, 9, 9, 7, 9, 6, 0, 5, 9, 0, 4, 1, 8, 2, 1, 7, 1, 7, 4, 9, 0, 7, 1, 7, 5, 1, 7, 6, 2, 8, 1, 3, 5, 5, 6, 8, 6, 8, 7, 6, 5, 9, 8, 4, 1, 3, 1, 4, 2, 0, 8, 2, 9, 3, 4, 1, 8, 8, 6, 9, 4, 7
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0.

Examples

			1.4503403284956304060529830766806978814082999796059041821717...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.8, p. 61.

Crossrefs

Programs

  • Mathematica
    digits = 102; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^2*Log[2])); s[n_] = Series[f[n] , {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n] , {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n] , {n, exactEnd + 1, Infinity}] // N[#, digits]&; A087492 = 1/Sqrt[exactSum + extraSum] // RealDigits // First (* Jean-François Alcover, Feb 06 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 06 2013

A087493 Decimal expansion of Khinchin mean K_{-3}.

Original entry on oeis.org

1, 3, 1, 3, 5, 0, 7, 0, 7, 8, 6, 8, 7, 9, 8, 5, 7, 6, 6, 7, 1, 7, 3, 3, 9, 4, 4, 7, 0, 7, 2, 7, 8, 6, 8, 2, 8, 1, 5, 8, 1, 2, 9, 8, 6, 1, 4, 8, 4, 7, 9, 2, 0, 5, 8, 8, 0, 9, 8, 4, 9, 8, 0, 5, 4, 2, 3, 8, 8, 1, 3, 6, 0, 3, 3, 8, 8, 1, 5, 9, 2, 5, 0, 5, 2, 4, 2, 9, 1, 5, 4, 1, 1, 8, 2, 2, 0, 8, 6, 1, 1, 7, 2
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0.

Examples

			1.3135070786879857667173394470727868281581298614...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.8, p. 61.

Crossrefs

Programs

  • Mathematica
    digits = 102; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^3*Log[2])); s[n_] = Series[f[n] , {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n] , {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n] , {n, exactEnd + 1, Infinity}] // N[#, digits]&; A087493 = (exactSum + extraSum)^(-1/3) // RealDigits // First (* Jean-François Alcover, Feb 06 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 06 2013

A087494 Decimal expansion of Khinchin mean K_{-4}.

Original entry on oeis.org

1, 2, 3, 6, 9, 6, 1, 8, 0, 9, 4, 2, 3, 7, 3, 0, 0, 5, 2, 6, 2, 6, 2, 2, 7, 2, 4, 4, 4, 5, 3, 4, 2, 2, 5, 6, 7, 4, 2, 0, 2, 4, 1, 1, 3, 1, 5, 4, 8, 9, 3, 7, 1, 3, 0, 0, 9, 1, 9, 5, 9, 2, 7, 9, 9, 4, 4, 2, 6, 5, 9, 0, 4, 9, 4, 8, 9, 1, 0, 6, 5, 5, 0, 7, 7, 0, 4, 2, 7, 0, 8, 9, 2, 3, 6, 4, 1, 2, 8, 0
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0.

Examples

			1.23696180...
		

Crossrefs

Programs

  • Mathematica
    m = 4; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 14 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 14 2013

A087495 Decimal expansion of Khinchin mean K_{-5}.

Original entry on oeis.org

1, 1, 8, 9, 0, 0, 3, 9, 2, 6, 4, 6, 5, 5, 1, 3, 1, 5, 4, 0, 6, 2, 3, 6, 3, 7, 3, 2, 7, 7, 1, 4, 0, 3, 3, 9, 7, 3, 8, 6, 0, 9, 2, 5, 1, 2, 6, 3, 9, 6, 7, 1, 6, 2, 6, 4, 0, 9, 8, 4, 3, 6, 9, 3, 5, 6, 4, 6, 6, 5, 0, 0, 7, 9, 6, 8, 4, 2, 3, 0, 6, 1, 7, 7, 4, 2, 4, 6, 8, 9, 3, 3, 3, 3, 9, 7, 6, 3, 1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0.

Examples

			1.18900392...
		

Crossrefs

Programs

  • Mathematica
    m = 5; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 14 2013 *)

A087496 Decimal expansion of Khinchin mean K_{-6}.

Original entry on oeis.org

1, 1, 5, 6, 5, 5, 2, 3, 7, 4, 4, 2, 1, 5, 1, 4, 4, 2, 3, 1, 5, 2, 6, 0, 5, 9, 9, 8, 7, 4, 3, 4, 1, 0, 0, 4, 6, 8, 4, 0, 2, 1, 3, 0, 7, 0, 7, 1, 8, 7, 6, 1, 2, 9, 2, 2, 3, 1, 0, 6, 7, 0, 7, 7, 3, 8, 2, 8, 6, 7, 2, 2, 7, 1, 5, 0, 3, 5, 7, 6, 6, 4, 3, 9, 2, 6, 5, 1, 7, 9, 7, 1, 8, 3, 9, 2, 9, 3, 4, 2
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0.

Examples

			1.15655237...
		

Crossrefs

Programs

  • Mathematica
    m = 6; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 14 2013 *)

Extensions

More terms from Charles R Greathouse IV, Jul 16 2007
Edited by Charles R Greathouse IV, Oct 28 2009
More terms from Jean-François Alcover, Feb 14 2013

A087497 Decimal expansion of Khinchin mean K_{-7}.

Original entry on oeis.org

1, 1, 3, 3, 3, 2, 3, 3, 6, 3, 9, 5, 0, 8, 6, 5, 7, 9, 4, 9, 1, 0, 2, 8, 9, 6, 9, 4, 9, 0, 8, 8, 6, 8, 3, 6, 3, 5, 9, 9, 0, 9, 8, 2, 8, 2, 4, 1, 1, 7, 9, 7, 7, 5, 2, 5, 9, 6, 1, 3, 0, 8, 1, 7, 9, 4, 4, 2, 5, 7, 4, 1, 9, 8, 7, 6, 2, 6, 7, 4, 4, 5, 0, 1, 0, 3, 5, 4, 4, 5, 8, 0, 4, 9, 0, 0, 2, 0, 2, 6
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0.

Examples

			1.13332336...
		

Crossrefs

Programs

  • Mathematica
    m = 7; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 14 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 14 2013

A087499 Decimal expansion of Khinchin mean K_{-9}.

Original entry on oeis.org

1, 1, 0, 2, 5, 4, 3, 1, 3, 6, 6, 7, 0, 7, 2, 8, 0, 1, 3, 8, 3, 6, 0, 9, 3, 4, 0, 2, 5, 2, 2, 5, 6, 8, 3, 5, 1, 0, 2, 2, 2, 2, 1, 2, 8, 4, 1, 4, 9, 3, 1, 8, 4, 0, 2, 3, 3, 1, 3, 1, 9, 8, 4, 7, 6, 8, 6, 3, 2, 5, 6, 2, 6, 9, 4, 7, 4, 4, 6, 0, 3, 3, 3, 6, 4, 1, 3, 9, 2, 0, 7, 8, 7, 2, 3, 7, 1, 7, 8, 4
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0.

Examples

			1.10254313...
		

Crossrefs

Programs

  • Mathematica
    m = 9; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 14 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 14 2013
Showing 1-9 of 9 results.