cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A099791 Records for terms in the continued fraction of the Glaisher-Kinkelin constant A.

Original entry on oeis.org

1, 3, 5, 12, 271, 12574, 13740, 78907, 133430, 574536
Offset: 1

Views

Author

Eric W. Weisstein, Oct 27 2004

Keywords

Crossrefs

Extensions

a(8)-a(9) from Eric W. Weisstein, Jul 08 2013
Offset changed by Andrew Howroyd, Aug 11 2024

A225752 Positions of incrementally largest terms in the continued fraction of the Glaisher-Kinkelin constant A.

Original entry on oeis.org

0, 1, 4, 9, 12, 266, 3170, 3212, 12961, 82527
Offset: 1

Views

Author

Eric W. Weisstein, Jul 25 2013

Keywords

Comments

Correctly indexed version of A099792 using [a_0; a_1, a_2, ...].

Crossrefs

Cf. A099792 (= a(n) + 1).
Cf. A099791 (incrementally largest terms).
Cf. A087501 (continued fraction).

Formula

a(n) = A099792(n) - 1.

Extensions

Offset changed by Andrew Howroyd, Aug 11 2024

A225762 Position of the first occurrence of n in continued fraction for the Glaisher-Kinkelin constant.

Original entry on oeis.org

0, 15, 1, 10, 4, 19, 16, 77, 21, 62, 229, 9, 52, 275, 30, 129, 200, 74, 240, 934, 1114, 401, 517, 33, 1433, 76, 431, 144, 742, 248, 521, 541, 3614, 1585, 18, 584, 691, 168, 35, 471, 352, 236, 869, 637, 258, 6100, 1459, 163, 1550, 1821, 1325, 1582, 885, 2751, 568
Offset: 1

Views

Author

Eric W. Weisstein, Jul 25 2013

Keywords

Crossrefs

Cf. A087501 (continued fraction of the Glaisher-Kinkelin constant).

A279919 Numerators of convergents to Glaisher-Kinkelin constant (A074962).

Original entry on oeis.org

1, 4, 5, 9, 50, 59, 109, 168, 613, 7524, 30709, 38233, 10391852, 10430085, 20821937, 52073959, 385339650, 437413609, 15694815965, 94606309399, 110301125364, 1087316437675, 4459566876064, 10006450189803, 14466017065867, 24472467255670, 63410951577207, 87883418832877
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 23 2016

Keywords

Examples

			1, 4/3, 5/4, 9/7, 50/39, 59/46, 109/85, 168/131, 613/478, 7524/5867, 30709/23946, 38233/29813, ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Glaisher, 28]]

A279920 Denominators of convergents to Glaisher-Kinkelin constant (A074962).

Original entry on oeis.org

1, 3, 4, 7, 39, 46, 85, 131, 478, 5867, 23946, 29813, 8103269, 8133082, 16236351, 40605784, 300476839, 341082623, 12238368644, 73771294487, 86009663131, 847858262666, 3477442713795, 7802743690256, 11280186404051, 19082930094307, 49446046592665, 68528976686972
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 23 2016

Keywords

Examples

			1, 4/3, 5/4, 9/7, 50/39, 59/46, 109/85, 168/131, 613/478, 7524/5867, 30709/23946, 38233/29813, ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[Glaisher, 28]]

A193547 Decimal expansion of 6*log(A) - 1/2 - 2*log(2)/3, where A is the Glaisher-Kinkelin constant (A074962).

Original entry on oeis.org

5, 3, 0, 4, 2, 8, 7, 4, 1, 8, 2, 9, 4, 0, 8, 7, 0, 2, 3, 3, 8, 6, 9, 6, 5, 4, 7, 1, 5, 1, 2, 3, 2, 8, 1, 1, 2, 0, 0, 5, 5, 1, 5, 2, 5, 7, 7, 1, 0, 4, 0, 5, 3, 2, 5, 8, 5, 3, 4, 7, 1, 6, 5, 1, 4, 8, 5, 6, 2, 4, 5, 0, 0, 1, 9, 6, 6, 6, 5, 5, 9, 4, 8, 6, 5, 7, 5, 0, 5, 0, 6, 6, 4, 1, 0, 6, 7, 4, 1, 5
Offset: 0

Views

Author

John M. Campbell, Jul 30 2011

Keywords

Examples

			0.530428...
		

Crossrefs

Programs

  • Mathematica
    N[-Integrate[(x (4 x^2 - x^4))/((-2 + x^2)^2 Log[1 - x^2]), {x, 0,  1}]]
    RealDigits[-(1/2) - (2 Log[2])/3 + 6 Log[Glaisher], 10, 200]
  • PARI
    -6*zeta'(-1)-2*log(2)/3 \\ Charles R Greathouse IV, Dec 12 2013

Formula

Equals: -integral(x=0..1, x*(4*x^2 - x^4) / ((-2 + x^2)^2 * log(1 - x^2)) ). See Guillera & Sondow link for a related product.
Showing 1-6 of 6 results.