cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A087510 Primes consisting only of digits 0 and 1 occurring with equal frequency.

Original entry on oeis.org

10010101, 10100011, 1000011011, 1000110101, 1001000111, 1001001011, 1001010011, 1010000111, 1010001101, 1010010011, 1010100011, 1010110001, 1011000101, 1100001101, 1101001001, 10000101011101, 10000111100011, 10000111110001, 10001000011111, 10001001011011
Offset: 1

Views

Author

Paul D. Hanna and Amarnath Murthy, Sep 11 2003

Keywords

Comments

There are 18 digit pairs which can produce such primes: (1,0),(1,3),(1,4),(1,6),(1,7),(1,9),(2,3),(2,9),(3,4),(3,5),(3,7),(3,8),(4,7),(4,9),(5,9),(6,7),(7,9),(8,9).

Crossrefs

Primes in A071925.
The 18 sequences in this family are: this sequence (1,0), A087511 (1,3), A087512 (1,4), A087513 (1,6), A087514 (1,7), A087515 (1,9), A087527 (2,3), A087528 (2,9), A087529 (3,4), A087530 (3,5), A087531 (3,7), A087532 (3,8), A087533 (4,7), A087534 (4,9), A087535 (5,9), A087536 (6,7), A087537 (7,9), A087538 (8,9).

Programs

  • Mathematica
    Select[FromDigits/@Tuples[{0,1},14],PrimeQ[#] && Length[x=IntegerDigits[#]]==2*Count[x,0] &] (* Jayanta Basu, May 23 2013 *)
  • PARI
    \\ B(k,d1,d2,pred) k-digits of (d1,d2) each, satisfying pred.
    B(k,d1,d2,pred)={my(L=List(),m=10^(2*k-1)); forsubset([2*k,k], s, my(t=(10^(2*k)-1)/9*d1 + (d2-d1)*sum(i=1, #s, 10^(s[i]-1))); if(t>=m && pred(t), listput(L,t))); vecsort(Vec(L))}
    { concat(vector(7,k,B(k,0,1,isprime)))[1..20] } \\ Andrew Howroyd, Sep 20 2024

A087530 Primes consisting only of digits 3 and 5 occurring with equal frequency.

Original entry on oeis.org

53, 35553533, 53355353, 53533553, 3335553553, 3355335553, 3355355533, 3355533553, 3355535353, 3535355353, 3553535353, 3553555333, 3555353353, 3555353533, 3555533533, 5353353553, 5353533553, 5353553533, 5355353533, 5355533353, 5533553353, 5535535333
Offset: 1

Views

Author

Amarnath Murthy and Paul D. Hanna, Sep 12 2003

Keywords

Comments

There are 18 digit pairs which can produce such primes. (1,0),(1,3),(1,4),(1,6),(1,7),(1,9),(2,3),(2,9),(3,4),(3,5),(3,7),(3,8),(4,7),(4,9),(5,9),(6,7),(7,9),(8,9).

Crossrefs

Programs

  • Mathematica
    Sort[Select[FromDigits/@Flatten[Permutations/@Table[PadRight[{},2n,{3,5}],{n,5}],1],PrimeQ]] (* Harvey P. Dale, Oct 24 2012 *)
  • PARI
    \\ Needs B() from A087510.
    concat(vector(6,k,B(k,3,5,isprime))) \\ Andrew Howroyd, Sep 20 2024

Extensions

Edited by Charles R Greathouse IV, Oct 28 2009

A173002 Primes consisting of two digits only, each digit with frequency f = 4.

Original entry on oeis.org

10010101, 11171777, 11177717, 11313331, 11333131, 11919199, 11919991, 13111333, 13131133, 13131331, 13133311, 13311313, 14441411, 16166611, 16616161, 17111777, 17171177, 17171771, 17177117, 17711717, 17717171
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 07 2010

Keywords

Comments

2 digits, f = 1: 20 primes p 11 < p < =97: 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
2 digits, f = 2: no primes as abab has divisor 101, abba and aabb divisor 11
2 digits, f = 3: no primes as sum of digits 3 * (a+b)
2 digits, f = 4: there are 18 possibilities for (a,b):
(1,0), (1,3), (1,4), (1,6), (1,7), (1,9), (2,3), (2,9), (3,4), (3,5), (3,7), (3,8), (4,7), (4,9), (5,9), (6,7), (7,9), (8,9)
Each possibility occurs, 2+9+3+5+13+11+2+6+3+3+10+2+2+5+2+2+6+4 = 90 = 2 * 3^2 * 5 primes

Examples

			Complete list classified according to the 18 possible "pairs":
10010101, 10011101
11313331, 11333131, 13111333, 13131133, 13131331, 13133311, 13311313, 31133131, 33113131
14441411, 41414411, 44114141
16166611, 16616161, 61116661, 61661161, 66161611
11171777, 11177717, 17111777, 17171177, 17171771, 17177117, 17711717, 17717171, 71117177, 71171717, 71717117, 77111717, 77711171
11919199, 11919991, 19111999, 19199119, 19911919, 19991911, 91919911, 91999111, 99111919, 99119191, 99919111
23223323, 32323223
22929299, 29229929, 29299229, 29992229, 92922299, 99292229
34434343, 44334343, 44343433
35553533, 53355353, 53533553
33373777, 33773737, 37373773, 37377337, 73337377, 73337773, 73373737, 73773373, 77337373, 77733373
38383883, 88838333
47447747, 77474447
44994949, 49444999, 49494499, 49499449, 94449499
55599959, 99555959
67766767, 76767667
77997979, 79779979, 79797997, 79997977, 99977797, 99979777
88989899, 98988899, 98989889, 99898889
		

References

  • Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005
  • Wladyslaw Narkiewicz: The development of prime number theory: from Euclid to Hardy and Littlewood, Springer Monographs in Mathematics, Berlin, New York, 2000
  • Paulo Ribenboim: The little book of bigger primes, Springer Berlin, New York, 2004

Crossrefs

Extensions

Second entry 10011101 deleted (does not comply with definition) and a new term added at the end. Lekraj Beedassy, Jul 17 2010
Showing 1-3 of 3 results.